
1

Module VI

Memory and Programmable Logic: Random-Access Memory (RAM)—Memory Decoding—

Error Detection and Correction — Read only Memory (ROM), Programmable Logic Array

(PLA).

HDL: fundamentals, combinational logic, adder, multiplexer.

Arithmetic algorithms: Algorithms for addition and subtraction of binary and BCD numbers,

algorithms for floating point addition and subtraction

MEMORY AND PROGRAMMABLE LOGIC

Block Diagram of a memory unit

A memory unit is a device to which binary information is transferred for storage and from

which information is retrieved when needed for processing.

 There are two types of memories that are used in digital systems: random-access memory

(RAM) and read-only memory (ROM).

 RAM can perform both Write and Read operations.

 ROM can perform only the Read operation

 RANDOM-ACCESS MEMORY

A memory unit is a collection of storage cells, together with associated circuits needed to

transfer into and out of device. The architecture of memory is such that information can be

selectively retrieved from any of its internal locations. The time it takes to transfer

information to or from any desired random location is always the same hence the name

random access memory. A memory unit stores binary information in groups of bits called

words. A group of 8 bits is called a byte.

Switching theory and logic design

To Get more materials click here> www.ktustudents.in

www.ktustudents.in

http://www.ktustudents.in
http://www.ktustudents.in

2

Write and Read Operations

Write to RAM

Apply the binary address of the desired word to the address lines

Apply the data bits that must be stored in memory to the data input lines

Activate the write control

Read from RAM

 Apply the binary address of the desired word to the address lines

 Activate the read control

Types of Memories

1. Access mode:

a. Random access: any locations can be accessed in any order

b. Sequential access: accessed only when the requested word has been reached (ex:

hard disk)

2. Operating mode:

a. Static RAM (SRAM)

b. Dynamic RAM (DRAM)

3. Volatile mode:

a. Volatile memory: lose stored information when power is turned off (ex: RAM)

b. Non-volatile memory: retain its storage after removal of power (ex: flash, ROM,

hard-disk)

SRAM vs. DRAM

MEMORY DECODING

The equivalent logic of a binary cell that stores one bit of information is shown below

To Get more materials click here> www.ktustudents.in

www.ktustudents.in

http://www.ktustudents.in
http://www.ktustudents.in

3

Memory construction 4x4 RAM

Two Dimensional Decoding Structure for a 1k word memory

ERROR DETECTION AND CORRECTION

Memory arrays are often very huge.May cause occasional errors in data access . Reliability of

memory can be improved by employing error-detecting and correcting codes

Error-detecting code: only check for the existence of errors. Most common scheme is the

parity bit

To Get more materials click here> www.ktustudents.in

www.ktustudents.in

http://www.ktustudents.in
http://www.ktustudents.in

4

Error-correcting code: check the existence and locations of errors .Use multiple parity check

bits to generate a syndrome that can indicate the erroneous bits .Complement the erroneous

bits can correct the errors

Hamming Code

One of the most common used in RAM was devised by R. W. Hamming (called Hamming

code).

In Hamming code: k = parity bits in n-bit data word,

 forming a new word of n + k bits. Those positions numbered as a power of 2 are reserved for

the parity bits. the remaining bits are the data bits.

Error Detection and Correction Using Hamming Code

Example 1 : 4 bit data (Explained in Class Room) (7 Bit hamming Code)

Example 2: 8 bit data

Encoding in the Hamming Code

Consider the 8-bit data word 11000100. we include four parity bits with it and arrange the 12

bits as follows:

Bit position:

D12 – 1 , D11 - 1 , D10 – 0 , D9 – 0 , D7 – 0 , D6 – 1 , D5 – 0 , D3 – 0

P1 = XOR of bits(3,5,7,9,11) = 0, 0, ,0, 0, 1 - 1

P2 = XOR of bits(3,6,7,10,11) = 0, 1 , 0, 0, 1 – 0

P4 = XOR of bits(5,6,7,12) = 0, 1,0,1 - 0

P8 = XOR of bits(9,10,11,12) – 0, 0, 1,1 – 0

Then the Encoded Data using Hamming Code = 110000100001

D12 D11 D10 D9 P8 D7 D6 D5 P4 D3

33

33

P2 P1

To Get more materials click here> www.ktustudents.in

www.ktustudents.in

http://www.ktustudents.in
http://www.ktustudents.in

5

Error Detection

By the effect of noise the transmitted data 110000100001 changed 111000100001 in receiver

side

The method of Error Detection is as follows

We know P1 = XOR of bits(3,5,7,9,11) = 0, 0, ,0, 0, 1 – 1 that means no error

P2 = XOR of bits(3,6,7,10,11) = 0, 1 , 0, 1, 1 – 0 error

P4 = XOR of bits(5,6,7,12) = 0, 1,0,1 – 0 – no error

P8 = XOR of bits(9,10,11,12) – 0, 1, 1,1 – 0 - Error

Error Correction

After checking the Parity bit we identified that there is an error in received bit. The next step

is to correct that error. For error correction we need to find which bit contains the error. For

this purpose

Assign 1 to Error found Parity bit other wise 0. In this case P2 and P8 shows Error and P1

and P4 shows no error. So P1=0, P4=0 and P2=1, P8 =1

That can be written as P8 P4 P2 P1 = 1010. Consider this number as binary and convert it in

to decimal. 1010 = 10. The bit position 10 is the error bit. So change that bit.

READ ONLY MEMORY (ROM)

A memory device that can permanently keep binary data. Even when power is turned off and

on again

Types of ROMs

 Mask programming

o Program the ROM in the semiconductor factory

o Economic for large quantity of the same ROM

 Programmable ROM (PROM)

o Contain all fuses at the factory ! Program the ROM by burning out the

undesired fuses (irreversible process)

 Erasable PROM (EPROM)

o Can be restructured to the initial state under a special ultraviolet light for a

given period of time

 Electrically erasable PROM (EEPROM or E2PROM)

o Like the EPROM except being erased with electrical signals

To Get more materials click here> www.ktustudents.in

www.ktustudents.in

http://www.ktustudents.in
http://www.ktustudents.in

6

PROGRAMMABLE LOGIC ARRAY

A programmable logic array (PLA) is a type of fixed architecture logic device with

programmable AND gates Followed by Programmable OR gates .

The number of AND gates in the programmable AND array are usually much less and the

number of inputs of each of the OR gates equal to the number of AND gates. The OR gate

generates an arbitrary Boolean function of minterms equal to the number of AND gates.

Figure below shows the PLA architecture with four input lines, a programmable array of

eight AND gates at the input and a programmable array of two OR gates at the output.

Advantages

PLA architecture more efficient than a PROM.

Disadvantage

PLA architecture has two sets of programmable fuses due to which PLA devices are

difficult to manufacture, program and test.

(Example Explained in Class Room)

To Get more materials click here> www.ktustudents.in

www.ktustudents.in

http://www.ktustudents.in
http://www.ktustudents.in

7

HARDWARE DESCRIPTION LANGUAGES

In electronics, a hardware description language (HDL) is a specialized

computer language used to describe the structure and behaviour of electronic circuits, and

most commonly, digital logic circuits.

The two leading hardware description languages are Verilog and VHDL.

Verilog and VHDL are built on similar principles but have different syntax

Verilog

Verilog was developed by Gateway Design Automation as a proprietary language for logic

simulation in 1984. Gateway was acquired by Cadence in 1989 and Verilog was made an

open standard in 1990 under the control of Open Verilog International. The language became

an IEEE standard1 in 1995 (IEEE STD 1364) and was updated in 2001.

 A Verilog module begins with the module name and a listing of the inputs and outputs. The

assign statement describes combinational logic. ~ indicates NOT, & indicates AND, and

| indicates OR.

Verilog signals such as the inputs and outputs are Boolean variables (0 or 1).

module sillyfunction (input a, b, c,

output y);

assign y _ ~a & ~b & ~c |

a & ~b & ~c |

a & ~b & c;

endmodule

VHDL

VHDL is an acronym for the VHSIC Hardware Description Language. VHSIC is in turn an

acronym for the Very High Speed Integrated Circuits program of the US Department of

Defense. VHDL was originally developed in 1981 by the Department of Defense to describe

the structure and function of hardware. Its roots draw from the Ada programming language.

The IEEE standardized it in 1987 (IEEE STD 1076) and has updated the standard several

times since. The language was first envisioned for documentation but was

quickly adopted for simulation and synthesis

To Get more materials click here> www.ktustudents.in

www.ktustudents.in

http://www.ktustudents.in
http://www.ktustudents.in

8

VHDL code has three parts: the library use clause, the entity declaration, and the architecture

body. The entity declaration lists the module name and its inputs and outputs.

The architecture body defines what the module does.VHDL signals, such as inputs and

outputs, must have a type declaration. Digital signals should be declared to be

STD_LOGIC type. STD_LOGIC signals can have a value of ‘0’ or ‘1’, as well as floating

and undefined values. The STD_LOGIC type is defined in the IEEE.STD_LOGIC_1164

library, which is why the library must be used. VHDL lacks a good default order of

operations, so Boolean equations should be parenthesized

library IEEE; use IEEE.STD_LOGIC_1164.all;

entity sillyfunction is

port (a, b, c: in STD_LOGIC;

y: out STD_LOGIC);

end;

architecture synth of sillyfunction is

begin

y __ ((not a) and (not b) and (not c)) or

(a and (not b) and (not c)) or

(a and (not b) and c);

end;

To Get more materials click here> www.ktustudents.in

www.ktustudents.in

http://www.ktustudents.in
http://www.ktustudents.in

9

COMBINATIONAL LOGIC

Inverters

Logic Gates

To Get more materials click here> www.ktustudents.in

www.ktustudents.in

http://www.ktustudents.in
http://www.ktustudents.in

10

MULTIPLEXER

To Get more materials click here> www.ktustudents.in

www.ktustudents.in

http://www.ktustudents.in
http://www.ktustudents.in

11

Mux synthesized circuit

ADDER

To Get more materials click here> www.ktustudents.in

www.ktustudents.in

http://www.ktustudents.in
http://www.ktustudents.in

12

Full adder Synthesized circuit

ARITHMETIC ALGORITHMS:

Addition and Subtraction with Signed-Magnitude Data The representation of numbers in

signed-magnitude is familiar because it is used in everyday arithmetic calculations. The

procedure for adding or subtracting two signed binary numbers with paper and pencil is

simple and straightforward.

A review of this procedure will be helpful for deriving the hardware algorithm. We designate

the magnitude of the two numbers by A and B. When the signed numbers are added or

subtracted, we find that there are eight different conditions to consider, depending on the sign

of the numbers and the operation performed. These conditions are listed in the first column of

Table . The other columns in the table show the actual operation to be performed with the

magnitude of the numbers. The last column is needed to prevent a negative zero.

 In other words, when two equal numbers are subtracted, the result should be +0 not -0. The

algorithms for addition and subtraction are derived from the table and can be stated as

follows (the words inside parentheses should be used for the subtraction algorithm): Addition

(subtraction) algorithm: when the signs of A and B are identical (different), add the two

magnitudes and attach the sign of A to the result. When the signs of A and B are different

(identical), compare the magnitudes and subtract the smaller number from the larger. Choose

the sign of the result to be the same as A if A > B or the complement of the sign of A if A <

B. If the two magnitudes are equal, subtract B from A and make the sign of the result

positive. The two algorithms are similar except for the sign comparison. The procedure to be

To Get more materials click here> www.ktustudents.in

www.ktustudents.in

http://www.ktustudents.in
http://www.ktustudents.in

13

followed for identical signs in the addition algorithm is the same as for different signs in the

subtraction algorithm, and vice versa

Algorithm Explanation

 The flowchart for the hardware algorithm is presented in Fig. . The two signs A, and B,are

compared by an exclusive-OR gate. If the output of the gate isO, the signs are identical; if it

is I, thesignsaredifferenl Foranelddoperation, identical signs dictate that the magnitudes be

added. For a subtrlld operation, different signs dictate that the magnitudes be added. The

magnitudes are added with a mlcrooperation EA .-A + B. where EA is a register that

combines E: and A. The carry in E: after the addition constitutes an overflow if it is equal to

1. The value of E: is transferred into the add-overnow flip-flop AVF. The two magnitudes are

subtracted if the signs are different for an Cldd operation or identical for a subtract operation.

The magnitudes are subtracted by adding A to the 2's complement of B. No overflow can

occur if the numbers are subtracted so AVF is cleared to 0. A 1 in E indicates that A � B

a.nd the number in A is the correct result. If this nu.mber i.s zero, the sign A, must be made

positive to avoid a negative zero. A 0 in E: indicates that A < B. For this case it is necessa ry

to take the 2's complement of the value in A. This operation can be done with one

mlcrooperation A .-A"+ 1. However, we assume that the A register has circuits for

mlcrooperations complm.mt and inlTtment, so the 2' s complement is obtained from these

two mlcroo perations. In other paths of the flowchart, the sign of the result is the same as the

sign of A, so no change in A, is required. However, when A < B, the sign of the result is the

complement of the original sign of A. It is then necessary to complement A, to obtain the

correct sign. The final result is found in register A and its sign in A,. The value inAVF

provides an overflow indication. The final value of E is immaterial.

To Get more materials click here> www.ktustudents.in

www.ktustudents.in

http://www.ktustudents.in
http://www.ktustudents.in

14

To Get more materials click here> www.ktustudents.in

www.ktustudents.in

http://www.ktustudents.in
http://www.ktustudents.in

15

ALGORITHM FOR FLOATING POINT ADDITION AND SUBTRACTION

During addition or subtraction, the two floating-point operands are in AC and BR. The sum

or difference is formed in the AC. The algorithm can be divided into four consecutive parts:

 1. Check for zeros.

2. Align the mantissas.

3. Add or subtract the mantissas.

4. Normalize the result.

A floating-point number that is zero cannot be normalized. If this number is used during the

computation, the result may also be zero. Instead of checking for zeros during the

normalization process we check for zeros at the beginning and terminate the process if

necessary. The alignment of the mantissas must be carried out prior to their operation. After

the mantissas are added or subtracted, the result may be unnormalized. The normalization

procedure ensures that the result is normalized prior to its transfer to memory. The flowchart

for adding or subtracting two floating-point binary numbers is shown in Fig. 10-15. If BR is

equal to zero, the operation is terminated, with the value in the AC being the result. If AC is

equal to zero, we transfer the content of BR into AC and also complement its sign if the

numbers are to be subtracted. If neither number is equal to zero, we proceed to align the

mantissas. The magnitude comparator attached to exponents a and b provides three outputs

that indicate their relative magnitude. If the two exponents are equal, we go to perform the

arithmetic operation. If the exponents are not equal, the mantissa having the smaller exponent

is shifted to the right and its exponent incremented. This process is repeated until the two

exponents are equal. The addition and subtraction of the two mantissas is identical to the

fixed-point addition and subtraction algorithm. The magnitude part is added or subtracted

depending on the operation and the signs of the two mantissas. If an overflow occurs when

the magnitudes are added, it is transferred into flip-flop E. If E is equal to 1, the bit is

transferred into A1 and all other bits of A are shifted right. The exponent must be

incremented to maintain the correct number. No underflow may occur in this case because

the original mantissa that was not shifted during the alignment was already in a normalized

position. If the magnitudes were subtracted, the result may be zero or may have an underflow.

If the mantissa is zero, the entire floating-point number in the AC is made zero. Otherwise,

the mantissa must have at least one bit that is equal to 1. The mantissa has an underflow if the

most significant bit in position A1 is 0. In that case, the mantissa is shifted left and the

exponent decremented. The bit in A1 is checked again and the process is repeated until it is

equal to 1. When A1 = 1, the mantissa is normalized and the operation is completed.

To Get more materials click here> www.ktustudents.in

www.ktustudents.in

http://www.ktustudents.in
http://www.ktustudents.in

16

To Get more materials click here> www.ktustudents.in

www.ktustudents.in

http://www.ktustudents.in
http://www.ktustudents.in

