
1

MEA Engineering College, Perinthalmanna

Department of Computer Science & Engineering

MODULE 1

Introduction to programming methodologies

Programming methodology deals with the analysis, design and implementation

of programs.

Algorithm

Algorithm is a step-by-step finite sequence of instruction, to solve a well-

defined computational problem.

That is, in practice to solve any complex real life problems; first we have

to define the problems. Second step is to design the algorithm to solve that

problem.

Writing and executing programs and then optimizing them may be

effective for small programs. Optimization of a program is directly concerned

with algorithm design. But for a large program, each part of the program must

be well organized before writing the program. There are few steps of refinement

involved when a problem is converted to program; this method is called

stepwise refinement method. There are two approaches for algorithm design;

they are top-down and bottom-up algorithm design.

Stepwise Refinement Techniques

We can write an informal algorithm, if we have an appropriate mathematical

model for a problem. The initial version of the algorithm will contain general

statements, i.e., informal instructions. Then we convert this informal algorithm

to formal algorithm, that is, more definite instructions by applying any

programming language syntax and semantics partially. Finally a program can

be developed by converting the formal algorithm by a programming language

manual. From the above discussion we have understood that there are several

steps to reach a program from a mathematical model. In every step there is a

refinement (or conversion).

That is to convert an informal algorithm to a program, we must go through

several stages of formalization until we arrive at a program — whose meaning

is formally defined by a programming language manual — is called stepwise

refinement techniques.

There are three steps in refinement process, which is illustrated in Figure

2

MEA Engineering College, Perinthalmanna

Department of Computer Science & Engineering

1. In the first stage, modeling, we try to represent the problem using an

appropriate mathematical model such as a graph, tree etc. At this stage, the

solution to the problem is an algorithm expressed very informally.

2. At the next stage, the algorithm is written in pseudo-language (or formal

algorithm) that is, a mixture of any programming language constructs and less

formal English statements. The operations to be performed on the various

types of data become fixed.

3. In the final stage we choose an implementation for each abstract data type

and write the procedures for the various operations on that type. The

remaining informal statements in the pseudo-language algorithm are replaced

by (or any programming language) C/C++ code.

Programming style

Following sections will discuss different programming methodologies to design

a program.

1. Procedural

2. Modular

3. Structured

4. Object oriented

1.Procedural Programming

Procedural programming is a paradigm based on the concept of using

procedures. Procedure (sometimes also called subprogram, routine or method)

is a sequence of commands to be executed. Any procedure can be called from

any point within the general program, including other procedures or even itself

(resulting in a recursion).

Procedural programming is widely used in large-scale projects, when the

following benefits are important:

 re-usability of pieces code designed as procedures

 ease of following the logic of program;

 Maintainability of code.

 Emphasis is on doing things (algorithms).

 Most of the functions share global data.

 Data move openly around the system from function to function.

 Functions transform data from one form to another.

3

MEA Engineering College, Perinthalmanna

Department of Computer Science & Engineering

Procedural programming is a sub-paradigm of imperative programming, since

each step of computation is described explicitly, even if by the means of

defining procedures.

2.Modular Programming

The program is progressively decomposed into smaller partition called

modules. The program can easily be written in modular form, thus allowing an

overall problem to be decomposed into a sequence of individual sub programs.

Thus we can consider, a module decomposed into successively subordinate

module. Conversely, a number of modules can combined together to form a

superior module.

A sub-module, are located elsewhere in the program and the superior

module, whenever necessary make a reference to subordinate module and call

for its execution. This activity on part of the superior module is known as a

calling, and this module is referred as calling module, and sub module referred

as called module. The sub module may be subprograms such as function or

procedures.

 The following are the steps needed to develop a modular program

1. Define the problem

2. Outline the steps needed to achieve the goal

3. Decompose the problem into subtasks

4. Prototype a subprogram for each sub task

5. Repeat step 3 and 4 for each subprogram until further decomposition

seems counter productive

4

MEA Engineering College, Perinthalmanna

Department of Computer Science & Engineering

Modular Programming is heavily procedural. The focus is entirely on writing

code (functions). Data is passive in Modular Programming. Modular

Programming discourages the use of control variables and flags in parameters;

their presence tends to indicate that the caller needs to know too much about

how the function is implemented.

 Two methods may be used for modular programming. They are known as

top-down and bottom-up. Regardless of whether the top-down or bottom-up

method is used, the end result is a modular program. This end result is

important, because not all errors may be detected at the time of the initial

testing. It is possible that there are still bugs in the program. If an error is

discovered after the program supposedly has been fully tested, then the

modules concerned can be isolated and retested by them. Regardless of the

design method used, if a program has been written in modular form, it is easier

to detect the source of the error and to test it in isolation, than if the program

were written as one function.

Advantages of modular programming

1. Reduce the complexity of the entire problem

2. Avoid the duplication of code

3. debugging program is easier and reliable

4. Improves the performance

5. Modular program hides the use of data structure

6. Global data also hidden in module

7. Reusability- modules can be used in other program without rewriting

and retesting

8. Modular program improves the portability of program

9. It reduces the development work

 Top- down modular programming

The principles of top-down design dictate that a program should be

divided into a main module and its related modules. Each module should also

be divided into sub modules according to software engineering and

programming style. The division of modules processes until the module

consists only of elementary process that are intrinsically understood and

cannot be further subdivided.

5

MEA Engineering College, Perinthalmanna

Department of Computer Science & Engineering

Top-down algorithm design is a technique for organizing and coding

programs in which a hierarchy of modules is used, and breaking the

specification down into simpler and simpler pieces, each having a single entry

and a single exit point, and in which control is passed downward through the

structure without unconditional branches to higher levels of the structure.

That is top-down programming tends to generate modules that are based on

functionality, usually in the form of functions or procedures or methods.

Bottom-Up modular programming

Bottom-up algorithm design is the opposite of top-down design. It refers

to a style of programming where an application is constructed starting with

existing primitives of the programming language, and constructing gradually

more and more complicated features, until the all of the application has been

written. That is, starting the design with specific modules and build them into

more complex structures, ending at the top. The bottom-up method is widely

used for testing, because each of the lowest-level functions is written and

tested first. This testing is done by special test functions that call the low-level

functions, providing them with different parameters and examining the results

for correctness. Once lowest-level functions have been tested and verified to be

correct, the next level of functions may be tested. Since the lowest-level

functions already have been tested, any detected errors are probably due to the

higher-level functions. This process continues, moving up the levels, until

finally the main function is tested.

6

MEA Engineering College, Perinthalmanna

Department of Computer Science & Engineering

3.Structured Programming

It is a programming style; and this style of programming is known by several

names: Procedural decomposition, Structured programming, etc. Structured

programming is not programming with structures but by using following types

of code structures to write programs:

1. Sequence of sequentially executed statements

2. Conditional execution of statements (i.e., “if” statements)

3. Looping or iteration (i.e., “for, do...while, and while” statements)

4. Structured subroutine calls (i.e., functions)

In particular, the following language usage is forbidden:

• “GoTo” statements

• “Break” or “continue” out of the middle of loops

• Multiple exit points to a function/procedure/subroutine (i.e., multiple

“return” statements)

• Multiple entry points to a function/procedure/subroutine/method

In this style of programming there is a great risk that implementation

details of many data structures have to be shared between functions, and thus

globally exposed. This in turn tempts other functions to use these

implementation details; thereby creating unwanted dependencies between

different parts of the program. The main disadvantage is that all decisions

made from the start of the project depend directly or indirectly on the high-level

specification of the application. It is a well known fact that this specification

tends to change over a time. When that happens, there is a great risk that large

parts of the application need to be rewritten.

Advantages of structured programming

1. clarity: structured programming has a clarity and logical pattern to their

control structure and due to this tremendous increase in programming

productivity

2. another key to structured programming is that each block of code has a

single entry point and single exit point.so we can break up long sequence

of code into modules

3. Maintenance: the clarity and modularity inherent in structured

programming is of great help in finding an error and redesigning the

required section of code.

7

MEA Engineering College, Perinthalmanna

Department of Computer Science & Engineering

4.Obect oriented programming

The major motivating factor in the invention of object-oriented approach

is to remove some of the flaws encountered in the procedural or modular

approach. OOP treats data as a critical element in the program development

and does not allow it to flow freely around the system. It ties data more closely

to the function that operate on it, and protects it from accidental modification

from outside function. OOP allows decomposition of a problem into a number

of entities called objects and then builds data and function around these

objects. The organization of data and function in object-oriented programs is

shown in fig. The data of an object can be accessed only by the function

associated with that object. However, function of one object can access the

function of other objects.

Some of the features of object oriented programming are:

• Emphasis is on data rather than procedure.

• Programs are divided into what are known as objects.

• Data structures are designed such that they characterize the objects.

 • Functions that operate on the data of an object are ties together in the data

structure.

• Data is hidden and cannot be accessed by external function.

• Objects may communicate with each other through function.

 • New data and functions can be easily added whenever necessary.

• Follows bottom up approach in program design.

8

MEA Engineering College, Perinthalmanna

Department of Computer Science & Engineering

Analysis of Algorithm

After designing an algorithm, it has to be checked and its correctness

needs to be predicted; this is done by analyzing the algorithm. The algorithm

can be analyzed by tracing all step-by-step instructions, reading the algorithm

for logical correctness, and testing it on some data using mathematical

techniques to prove it correct. Another type of analysis is to analyze the

simplicity of the algorithm. That is, design the algorithm in a simple way so

that it becomes easier to be implemented. However, the simplest and most

Straight forward way of solving a problem may not be sometimes the best one.

Moreover there may be more than one algorithm to solve a problem. The choice

of a particular algorithm depends on following performance analysis and

measurements:

1. Space complexity

2. Time complexity

Space Complexity

Analysis of space complexity of an algorithm or program is the amount of

memory it needs to run to completion. Some of the reasons for studying space

complexity are:

1. If the program is to run on multi user system, it may be required to specify

the amount of memory to be allocated to the program.

2. We may be interested to know in advance that whether sufficient memory is

available to run the program.

3. There may be several possible solutions with different space requirements.

4. Can be used to estimate the size of the largest problem that a program can

solve.

The space needed by a program consists of following components.

• Instruction space : Space needed to store the executable version of the

program and it is fixed.

• Data space : Space needed to store all constants, variable values and has

further two components :

(a) Space needed by constants and simple variables. This space is fixed.

(b) Space needed by fixed sized structural variables, such as arrays and

structures.

(c) Dynamically allocated space. This space usually varies.

9

MEA Engineering College, Perinthalmanna

Department of Computer Science & Engineering

• Environment stack space: This space is needed to store the information to

resume the suspended (partially completed) functions. Each time a function is

invoked the following data is saved on the environment stack :

(a) Return address : i.e., from where it has to resume after completion of the

Called function.

(b) Values of all lead variables and the values of formal parameters in the

function being invoked.

The amount of space needed by recursive function is called the recursion

stack space. For each recursive function, this space depends on the space

needed by the local variables and the formal parameter. In addition, this space

depends on the maximum depth of the recursion i.e., maximum number of

nested recursive calls.

 Time Complexity

The time complexity of an algorithm or a program is the amount of time

it needs to run to completion. The exact time will depend on the

implementation of the algorithm, programming language, optimizing the

capabilities of the compiler used, the CPU speed, other hardware

characteristics/specifications and so on. To measure the time complexity

accurately, we have to count all sorts of operations performed in an algorithm.

If we know the time for each one of the primitive operations performed in a

given computer, we can easily compute the time taken by an algorithm to

complete its execution. This time will vary from machine to machine. By

analyzing an algorithm, it is hard to come out with an exact time required. To

find out exact time complexity, we need to know the exact instructions

executed by the hardware and the time required for the instruction. The time

complexity also depends on the amount of data inputted to an algorithm. But

we can calculate the order of magnitude for the time required.

The time complexity also depends on the amount of data input to an

algorithm, but we can calculate the order of magnitude for the time required.

That is, our intention is to estimate the execution time of an algorithm

irrespective of the computer machine on which it will be used.

Some of the reasons for studying time complexity are

a) We may be interest to know in advance that whether an algorithm or

program will provide a satisfactory real time response

b) There may be several possible solutions with different time

requirements

10

MEA Engineering College, Perinthalmanna

Department of Computer Science & Engineering

Here, the more sophisticated method is to identify the key operations and

count such operations performed till the program completes its execution. A

key operation in our algorithm is an operation that takes maximum time

among all possible operations in the algorithm. Such an abstract, theoretical

approach is not only useful for discussing and comparing algorithms, but also

it is useful to improve solutions to practical problems. The time complexity can

now be expressed as function of number of key operations performed. Before

we go ahead with our discussions, it is important to understand the rate

growth analysis of an algorithm, as shown in Figure.

The function that involves ‘n’ as an exponent, i.e., 2n, nn, n ! are called

exponential functions, which is too slow except for small size input function

where growth is less than or equal to nc,(where ‘c’ is a constant) i.e.; n3, n2,

n log2n, n, log2 n are said to be polynomial. Algorithms with polynomial time

can solve reasonable sized problems if the constant in the exponent is small.

When we analyze an algorithm it depends on the input data, there are three

cases :

1. Best case

2. Average case

3. Worst case

In the best case, the amount of time a program might be expected to take on

best possible input data.

In the average case, the amount of time a program might be expected to take

on typical (or average) input data.

11

MEA Engineering College, Perinthalmanna

Department of Computer Science & Engineering

In the worst case, the amount of time a program would take on the worst

possible input configuration.

Frequency Count

Frequency count method can be used to analyze a program .Here we assume

that every statement takes the same constant amount of time for its execution.

Hence the determination of time complexity of a given program is is the just

matter of summing the frequency counts of all the statements of that program

Consider the following examples

……… for(i=0;I,n;i++) for(i=0;i<n;i++)

………. X++; for(j=0;j<n;j++)

X++; …….. x++;

(a) (b) (c)

In the example (a) the statement x++ is not contained within any loop

either explicit or implicit. Then its frequency count is just one. In

example (b) same element will be executed n times and in example (3) it

is executed by n2. From this frequency count we can analyze program

Growth of Functions and Asymptotic Notation

 When we study algorithms, we are interested in characterizing them according

to their efficiency. We are usually interesting in the order of growth of the

running time of an algorithm, not in the exact running time. This is also

referred to as the asymptotic running time. We need to develop a way to talk

about rate of growth of functions so that we can compare algorithms.

Asymptotic notation gives us a method for classifying functions according to

their rate of growth.

Big-O Notation

 Definition:

f(n) = O(g(n)) iff there are two positive constants c and n0 such that

|f(n)| ≤ c |g(n)| for all n ≥ n0 . If f(n) is nonnegative, we can simplify the last

condition to 0 ≤ f(n) ≤ c g(n) for all n ≥ n0 . then we say that “f(n) is big-O of

g(n).” . As n increases, f(n) grows no faster than g(n). In other words, g(n) is

an asymptotic upper bound on f(n).

12

MEA Engineering College, Perinthalmanna

Department of Computer Science & Engineering

Example: n 2 + n = O(n 3)

Proof: • Here, we have f(n) = n 2 + n, and g(n) = n3

• Notice that if n ≥ 1, n ≤ n3 is clear.

• Also, notice that if n ≥ 1, n2 ≤ n3 is clear.

 • In general, if a ≤ b, then na ≤ nb whenever n ≥ 1. This fact is used

often in these types of proofs.

 • Therefore, n2 + n ≤ n3 + n3 = 2n3

 • We have just shown that n2 + n ≤ 2n3 for all n ≥ 1

• Thus, we have shown that n2 + n = O(n3) (by definition of Big-O, with

n0 = 1, and c = 2.)

Big-Ω notation

 Definition:

f(n) = Ω(g(n)) iff there are two positive constants c and n0 such that

|f(n)| ≥ c |g(n)| for all n ≥ n0 .If f(n) is nonnegative, we can simplify the

last condition to 0 ≤ c g(n) ≤ f(n) for all n ≥ n0 • then we say that “f(n) is

omega of g(n).” • As n increases, f(n) grows no slower than g(n). In other

words, g(n) is an asymptotic lower bound on f(n)

Example: n3 + 4n2 = Ω(n2)

 Proof: • Here, we have f(n) = n3 + 4n2 , and g(n) = n2

• It is not too hard to see that if n ≥ 0, n3 ≤ n3 + 4n2

• We have already seen that if n ≥ 1, n2 ≤ n3

• Thus when n ≥ 1, n2 ≤ n3 ≤ n3 + 4n2

• Therefore,

1n2 ≤ n3 + 4n2 for all n ≥ 1

• Thus, we have shown that n3 + 4n2 = Ω(n2) (by definition of Big-Ω,

with n0 = 1, and c = 1.)

13

MEA Engineering College, Perinthalmanna

Department of Computer Science & Engineering

Big-Θ notation

 Definition:

f(n) = Θ(g(n)) iff there are three positive constants c1, c2 and n0 such that

c1|g(n)| ≤ |f(n)| ≤ c2|g(n)| for all n ≥ n0 . If f(n) is nonnegative, we can

simplify the last condition to 0 ≤ c1 g(n) ≤ f(n) ≤ c2 g(n) for all n ≥ n0 .then

we say that “f(n) is theta of g(n).” . As n increases, f(n) grows at the same

rate as g(n). In other words, g(n) is an asymptotically tight bound on f(n).

Example: n 2 + 5n + 7 = Θ(n 2)
Proof: •

When n ≥ 1, n2 + 5n + 7 ≤ n2 + 5n2 + 7n2 ≤ 13n2

 When n ≥ 0, n2 ≤ n2 + 5n + 7

 Thus, when n ≥ 1

1n2 ≤ n2 + 5n + 7 ≤ 13n2

Thus, we have shown that n2 + 5n + 7 = Θ(n2) (by definition of

Big-Θ, with n0 = 1, c1 = 1, and c2 = 13.)

Comparison of different Algorithm

Algorithm Best case Average case Worst case

Quick sort O(n log n) O(n log n) O(n2)

Merge sort O(n log n) O(n log n) O(n log n)

Heap sort O(n log n) O(n log n) O(n log n)

Bubble sort O(n) O(n2) O(n2)

Selection Sort O(n2) O(n2) O(n2)

Insertion sort O(n) O(n2) O(n2)

Binary search O(1) O(log n) O(log n)

Linear search O(1) O(n) O(n)

