MODULE VI

REFERENCE:

DISCRETE MATHEMATICAL STRUCTURES WITH APPLICATIONS TO COMPUTER SCIENCE

-J.P. TREMBLAY & R. MANOHAR

In statements involving variables, there are two parts –

• variable (is the subject of the statement)

o *predicate* (refers to a property that the subject can have).

Consider a sentence: x is greater than 2. Here "is greater than 2" is the predicate and x is the subject or variable.

•If v a l u e s a r e a s s i g n e d to all t he v a r i a b l e s , t h e resulting sentence is a proposition.

- e.g. x < 9 is a predicate
 - 4 < 9 is a proposition

Propositional Function

•A propositional function (or an open sentence) defined on A is a predicate together with subjects.

•It is denoted by the expression P(x) which has the property that P(a) is true or false for each $a \in A$.

• The set A is called domain of P(*x*) and the set Tp of all elements of A for which P (a) is true is called the truth set of P(*x*).

Universe of Discourse

Many mathematical statements assert that a property is true for all values of a variable in a particular domain, called the *universe of discourse*.

Quantifiers

 Quantification is the way by which a Propositional function can turn out to be a proposition.

• The expressions '**for all**' and '**there exists**' are called quantifiers.

• The process of applying quantifier to a variable is called quantification of variables.

Universal quantification

- The universal quantification of a predicate P(*x*) is the statement, "For all values of *x*, P(*x*) is true."
- The universal quantification of P(x) is denoted by
 v for all x P(x).
- The symbol v is called the universal quantifier.
- Universal quantification can also be stated in English as "for every *x*", "every *x*", or "for any *x*."

Example:

- The sentence P(x): (-x) = x is a predicate that makes sense for real numbers x. The universal quantification of P(x), v x P(x) is a true statement because for all real numbers, -(-x) = x.
- 2) Let Q(x) : x + 1 < 5, then *v* Q(x) : x + 1 < 5 is a false statement, as Q(5) is not true.

Existential quantification

• The existential quantification of a predicate P(*x*) is the statement

"There exists a value of *x* for which P(*x*) is true."

• The existential quantification of P (x) is denoted $\exists xP(x)$.

• The symbol \exists is called the existential quantifier.

Example:

- Let Q: x + 1 < 4.
 - The existential quantification of Q(x), $\exists x Q(x)$ is a true statement, because Q(2) is true statement.
- The statement ∃ y, y + 2 = y is false. There is no value of y for which the propositional function y+2 = y produces a true statement.

Negation of Quantified statement

Negations

The *negation* of a universal quantification is an existential quantification.

 $\neg \forall x P(x) \Leftrightarrow \exists x \neg P(x)$

•The negation of an existential quantification is a universal quantification.

 $\neg \exists x Q(x) \Leftrightarrow \forall x \neg Q(x)$

•For example,

The negation of all men are mortal is: There is a man who is not mortal.

\bigcirc		
\bigcap		
	//	

Statement	When True?	When False?
$\forall x P(x)$	P(x) is true for every x .	There is an x for which $P(x)$ is false.
$\exists x P(x)$	There is an x for which $P(x)$ is true.	P(x) is false for every x.

• Example :

Express the statement using quantifiers: "Every student in your school has a computer or has a friend who has a computer."

Solution :

Let c(*x*) : "*x* has a computer" F(*x*,*y*) : "*x* and y are friends"

Thus, We have $\forall x (C(x) \lor \exists y (C(y) \land F(x, y)))$ • Every student in this class has visited either Canada or Mexico.

Let M(x) be the statement "*x* has visited Mexico" and C(x) be the statement "*x* has visited Canada". $\forall x(C(x) \lor M(x))$, the universe of discourse for *x* is the set of all the

students in this class.

- If somebody is female and is a parent, then this person is someone's mother
 - Let F(x) be the statement "x is female", P(x) be the statement "x is a parent", and M(x, y) be the statement "x is the mother of y".

 $\forall x((F(x) \land P(x)) \rightarrow \exists yM(x, y))$, the universe of discourse for x and y is the set of all people.

THEORY OF INFERENCE FOR THE			
PREDICAT E CALCULAS			
Rule of Inference	Name		
$\therefore P(c) \text{ if } c \in U$	Universal instantiation		
$P(c)$ for an arbitrary $c \in U$ $\therefore \forall x P(x)$	Universal generalization		
$\exists x P(x) \\ \therefore P(c) \text{ for some element } c \in U$	Existential instantiation		
$P(c)$ for some element $c \in U$ $\therefore \exists x P(x)$	Existential generalization		

Table 1-6.2

E27 $(x)(A \lor B(x)) \Leftrightarrow A \lor (x)B(x)$ $(\exists x)(A \land B(x)) \Leftrightarrow A \land (\exists x)B(x)$ E28 E29 $(x)A(x) \rightarrow B \Leftrightarrow (\exists x)(A(x) \rightarrow B)$ E 80 $(\exists x)A(x) \to B \Leftrightarrow (x)(A(x) \to B)$ E 31 $A \rightarrow (x)B(x) \Leftrightarrow (x)(A \rightarrow B(x))$ $A \rightarrow (\exists x) B(x) \Leftrightarrow (\exists x) (A \rightarrow B(x))$ E 22

Valid Argument

- An argument in propositional logic is a sequence of compound propositions involving propositional variables
- All propositions in the argument are called **hypothesis** or **Premises**. The final proposition is called the **conclusion**.
- An argument form is valid if no matter which particular propositions are substituted for the propositional variables in its premises, the conclusion is true if the premises are all true.
- Thus we say the conclusion C can be drawn from a given set of premises or the argument is valid if the conjunction of all the premises implies the conclusion is a tautology.

Free and Bound Variables

•An expression like P (x) is said to have a free variable x (meaning, x is undefined).

 A quantifier (either ∀ or ∃) operates on an expression having one or more free variables, and binds one or more of those variables, to produce an expression having one or more bound variables.

Ex. $\exists x [x + y = z]$, x is bound but y and z are free variables.

xEy & ∀z(zEy→z=x)) \mathbf{E}

Bound occurrence

• $\forall x \exists x P(x) - x \text{ is not a free variable in}$ $\exists x P(x)$, therefore the $\forall x$ binding <u>isn't used</u>. • $(\forall x P(x)) \land Q(x)$ - The variable x in Q(x) is outside of the *scope* of the $\forall x$ quantifier, and is therefore free. Not a proposition! $\forall x P(x) \land Q(x) \neq \forall x (P(x) \land Q(x))$ $(\forall x P(x)) \land Q(x)$ $\forall x P(x) \land Q(y)$: clearer notation • $(\forall x P(x)) \land (\exists x Q(x)) - \text{This is legal, because}$ there are 2 different x's!

Let F(x, y) be the statement "*x loves y*," where the universe of discourse for both *x* and *y* consists of all people in the world. Use quantifiers to express each of these statements.

- a) Everybody loves Jerry.
- b) Everybody loves somebody.
- c) There is somebody whom everybody loves.
- d) Nobody loves everybody.
- e) There is somebody whom Lydia does not love. $(\exists x) \neg F(Lydia,x)$
- f) There is somebody whom no one loves.
- g) There is exactly one person whom everybody loves. $(\exists x)(\forall y) F(y,x)$

 $(\forall x) F(x, Jerry)$

 $(\forall x)(\exists y) F(x,y)$

 $(\exists y) (\forall x) F(x,y)$

 \neg ($\exists x$)($\forall y$) F(x,y)

 $(\exists x)(\forall y) \neg F(y,x)$

h) There are exactly two people whom Lynn loves.

 $(\exists x) \ (\exists y) \ ((x \neq y) \land F(Lynn,x) \land F(Lynn,y) \land (\forall z) \ (F(Lynn,z) \rightarrow (z=x) \lor (z=y) \) \)$

- i) Everyone loves himself or herself $(\forall x) F(x,x)$
- j) There is someone who loves no one besides himself or herself. $(\exists x) (\forall y) (F(x,y) \leftrightarrow x=y)$

To be continued.....