MODULE V

REFERENCE:

DISCRETE MATHEMATICAL STRUCTURES WITH APPLICATIONS TO COMPUTER SCIENCE -J.P. TREMBLAY & R. MANOHAR

Propositional Logic

Propositional Logic is the logic of compound statements built from simpler statements using socalled Boolean connectives.

Some applications in computer science:

- Design of digital electronic circuits.
- Expressing conditions in programs.
- Queries to databases & search engines.

Propositions

• A *proposition* is a statement that is either true (T) or false (F).

• A proposition (statement) may be denoted by a variable like P, Q, R,..., called a proposition (statement) variable.

Propositions

Examples

- Propositions:
- 1. I am a man.
- 2. I am taller than 170 cm.
- 3. You are studying in Baptist U.
- 4. 1 + 1 = 3.
- Not propositions:
- 1. How are you?
- 2. Go to catch the dog.
- 3. I like this color.

Truth Table

- A *truth table* displays the relationships between the truth values of propositions.
- Truth tables are especially valuable in the determination of the truth values of propositions constructed from simpler propositions.

Logical Operators (Connectives)

Sr. No.	Connective	Symbol	Compound statement
1	AND	Λ	Conjunction
2	OR	\checkmark	Disjunction
3	NOT	¬	Negation
4	XOR	\oplus	Exclusive-OR
5	Ifthen	\rightarrow	Conditional or implication
6	If and only if (iff)	\leftrightarrow	Biconditional

Conjunction

Let p and q be propositions. The proposition "p and q", denoted by $p \land q$, is the proposition that is true when both p and q are true and is false otherwise.

The proposition $p \land q$ is called the **conjunction** of p and q.

p	q	$p \land q$
Т	Т	Т
Т	F	F
F	Т	F
F	F	F

• Translate into symbolic form of the statement Jack and Jill went up the hill • P : Jack went up the hill • Q: Jill went up the hill • Statement can be written as PAQ

Disjunction

The proposition "*p* or *q*", denoted by $p \lor q$, is the proposition that is false when *p* and *q* are both false and true otherwise. The proposition $p \lor$ *q* is called the *disjunction* of *p* and *q*.

p	q	$p \lor q$
Т	Т	Т
Т	F	Т
F	Т	Т
F	F	F

Negation of a Proposition

```
Let p be a proposition. The statement

"It is not the case that p"

is another proposition, called the

negation of p. The negation of p is

denoted by \neg p and read "not p".

Example
```

```
P : "It is a sunny day."
```

 $\neg p$: "It is not the case that it is a sunny day.", or sin

simply "It is not a sunny day."

Exclusive Or

Let *p* and *q* be propositions. The *exclusive or* of *p* and *q*, denoted by true when exactly one of *p* and *q* is true and is false otherwise.

p	q	$p \oplus q$
Т	Т	F
Т	F	Т
F	Т	Т
F	F	F

Construct a truth table for P $\vee \neg Q$

Р	Q	¬Q	$\mathbf{P} \lor \neg \mathbf{Q}$
Т	Т	F	Т
Т	F	Т	Т
F	Т	F	F
F	F	Т	Т

Conditional Propositions

Implication

Let p and q be propositions. The *implication* $p \rightarrow q$ is the proposition that is false when p is true and q is false and true otherwise.

• In this implication, *p* is called the *hypothesis* and *q* is called the *conclusion*.

p	q	$p \rightarrow q$
Т	Т	Т
Т	F	F
F	Т	Т
F	F	Т

Remarks:

- Equivalent expressions of implication
- 1. if p, then q
- 2. p is sufficient for q
- 3. p implies q
- 4. p only if q
- 5. q is necessary for p
- Related Implications
- 1. $q \rightarrow p$ is called the converse of $p \rightarrow q$
- 2. $\neg q \rightarrow \neg p$ is called the contrapositive of $p \rightarrow q$

Biconditional

Let p and q be propositions. The *biconditional* $p \leftrightarrow q$ is the proposition that is true when pand q have the same truth values and is false otherwise.

In this biconditional, *p* is necessary and sufficient for *q*, or *p* if and only if *q*.

p	q	$p \leftrightarrow q$
Т	Т	Т
Т	F	F
F	Т	F
F	F	Т

• Converse:

If $P \rightarrow Q$ is an implication then $Q \rightarrow P$ is called the converse of $P \rightarrow Q$

Contra positive :

If $P \rightarrow Q$ is an implication then the implication $\neg Q \rightarrow \neg P$ is called it's contra positive.

• Inverse:

If $P \rightarrow Q$ is a an implication then $\neg P \rightarrow \neg Q$ is called its inverse.

Example 6:

Let P: You are good in Mathematics.
Q: You are good in Logic.
Then, P→Q : If you are good in Mathematics then you are good in Logic.

1) Converse: $(Q \rightarrow P)$ If you are good in Logic then you are good in Mathematics.

2) Contra positive: $\neg Q \rightarrow \neg P$ If you are not good in Logic then you are not good in Mathematics.

3) Inverse: $(\neg P \rightarrow \neg Q)$ If you are not good in Mathematics then you are not good in Logic.

Tautology, Contradiction and Contingency

- A compound proposition that is always true, no matter what the truth values of the propositions that occur in it, is called a *tautology*.
- A compound proposition that is always false is called a *contradiction*.
- A proposition that is neither a tautology nor a contradiction is called a *contingency*.

• Truth table of examples of a tautology and a contradiction

p	ר <i>p</i>	$p \lor \neg p$	$p \land \neg p$
Т	F	Т	F
F	Т	Т	F

Logically Equivalent

- •The propositions p and q are called logically equivalent if $p \leftrightarrow q$ is a tautology.
- The notation $p \Leftrightarrow q$ denotes that p and q are logically equivalent.

• The following truth table shows that the compound propositions logically equivalent.

p	q	$p \lor q$	$\neg (p \lor q)$	<i>י</i> ף	$\neg q$	$\neg p \land \neg q$
Т	Т	Т	F	F	F	F
Т	F	Т	F	F	Т	F
F	Т	Т	F	Т	F	F
F	F	F	Т	Т	Т	Т

• Complete the following truth table to show that $\neg p \lor q$ and $p \rightarrow q$ are logically equivalent.

p	q	<i>ר</i>	$\neg p \lor q$	$p \rightarrow q$
Т	Т			
Т	F			
F	Т			
F	F			

Logical Equivalences

Equivalence	Name
$ \begin{array}{c} p \land T \Leftrightarrow p \\ p \lor F \Leftrightarrow p \end{array} $	Identity laws
$ p \lor T \Leftrightarrow T p \land F \Leftrightarrow F $	Domination laws
$ \begin{array}{c} p \land p \Leftrightarrow p \\ p \lor p \Leftrightarrow p \end{array} $	Idempotent laws
$\neg(\neg p) \Leftrightarrow p$	Double negative law
$ p \lor q \Leftrightarrow q \lor p p \land q \Leftrightarrow q \land p $	Commutative laws
$ \begin{pmatrix} p \lor q \end{pmatrix} \lor r \Leftrightarrow p \lor (q \lor r) \\ (p \land q) \land r \Leftrightarrow p \land (q \land r) $	Associative laws
$p \lor (q \land r) \Leftrightarrow (p \lor q) \land (p \lor r)$ $p \land (q \lor r) \Leftrightarrow (p \land q) \lor (p \land r)$	Distributive laws
$\neg (p \land q) \Leftrightarrow \neg p \lor \neg q \neg (p \lor q) \Leftrightarrow \neg p \land \neg q$	De Morgan's laws
$p \to q \Leftrightarrow \neg p \lor q$	
Double Negative	$\neg (\neg p) \Leftarrow \Rightarrow p$
Absorption	$p \lor (p \land q) \Leftarrow p$ $p \land (p \lor q) \Leftarrow p$

Logical Equivalence Involving Implications :

- Let P & Q be two statements.
- The following table displays some useful equivalences for implications involving conditional and biconditional statements.

Sr. No.	Logical Equivalence involving implications	
1	$P \to Q \equiv \neg P \lor Q$	
2	$P \to Q \equiv \neg Q \to \neg P$	
3	$P \lor Q \equiv \neg P \to Q$	
4	$\mathbf{P} \wedge \mathbf{Q} \equiv \neg (\mathbf{P} \rightarrow \neg \mathbf{Q})$	
5	$\neg (P \rightarrow Q) \equiv P \land \neg Q$	
6	$(P \rightarrow Q) \land (P \rightarrow r) \equiv P \rightarrow (Q \land r)$	
7	$(P \rightarrow r) \land (Q \rightarrow r) \equiv (P \lor Q) \rightarrow r \qquad P \lor \neg Q$	
8	$(P \rightarrow Q) \lor (P \rightarrow r) \equiv P \rightarrow (Q \lor r)$	
9	$(P \rightarrow r) \lor (Q \rightarrow r) \equiv (P \land Q)r$	
10	$P \leftrightarrow Q \equiv (P \rightarrow Q) \land (Q \rightarrow P)$	
11	$P \leftrightarrow Q \equiv \neg P \leftrightarrow \neg Q$	
12	$P \leftrightarrow Q \equiv (P \land Q) \lor (\neg P \land \neg Q)$	
13	$\neg (P \leftrightarrow Q) \equiv P \leftrightarrow \neg Q$	

Well ordered Formulas

- A compound statement obtained from statement letters by using one or more connectives is called a statement pattern or statement form.
- Thus, if P, Q, R, ... are the statements (which can be treated as variables) then any statement involving these statements and the logical connectives ¬, ∧, ∨, →, ↔ is a statement form or a well ordered formula or statement pattern.
- Any statement involving propositional variable and logical connectives is a well formed formula

RULES OF INFERENCE

- Rule P: A premise may be introduced at any point in the derivation
- Rule T : A formula S may be introduced in the derivation if S is tautologically implied by any one or more of the preceding formulas in the derivation.

E_1	$\neg \neg P \Leftrightarrow P$	(double negation)
E_2	$P \land Q \Leftrightarrow Q \land P$	(commutative laws)
E_3	$P \lor Q \Leftrightarrow Q \lor P \qquad \qquad$	(commutative rans)
E_4	$(P \land Q) \land R \Leftrightarrow P \land (Q \land R) $	(associative laws)
E ₅	$(P \lor Q) \lor R \Leftrightarrow P \lor (Q \lor R) $	(00000200210 20110)
E ₆	$P \land (Q \lor R) \Leftrightarrow (P \land Q) \lor (P \land R)$	(distributive laws)
E	$P \lor (Q \land R) \Leftrightarrow (P \lor Q) \land (P \lor R)$	
E_8	$\neg (P \land Q) \Leftrightarrow \neg P \lor \neg Q$	(De Morgan's laws)
E_9	$\neg (P \lor Q) \Leftrightarrow \neg P \land \neg Q \qquad)$	
<i>E</i> ₁₀	$P \lor P \Leftrightarrow P$	
	$P \land P \Leftrightarrow P$	
E12	$R \lor (P \land P) \Leftrightarrow R$	
<i>E</i> ₁₃	$R \land (P \lor P) \Leftrightarrow R$	
<i>E</i> ₁₄	$R \lor (P \lor P) \Leftrightarrow \mathbf{I}$	
E15	$K \land (P \land P) \Leftrightarrow F$	
E16	$P \rightarrow Q \Leftrightarrow P \lor Q$	
E117	$ (P \to Q) \Leftrightarrow P \land Q $	
E18	$P \to Q \Leftrightarrow Q \to F$ $P \to (P \land 0) \to P$	
E19	$P \to (Q \to R) \Leftrightarrow (\Gamma \land Q) \to R$	

Table 1-4.2 IMPLICATIONS

 $P \land Q \Longrightarrow P$ I_1 (simplification) EXAMPLES Show 6 $I_2 \quad P \land Q \Longrightarrow Q$ $P \Longrightarrow P \lor Q$ Is (addition) $Q \Longrightarrow P \lor Q$ IA $I_5 \qquad \neg P \Longrightarrow P \to Q$ $I_0 \quad Q \Longrightarrow P \to Q$ $I_7 \qquad \neg (P \to Q) \Longrightarrow P$ $I_8 \qquad \neg (P \to Q) \Longrightarrow \neg Q$ $I_9 \quad P.Q \Longrightarrow P \land Q$ $I_{10} \quad \neg P, P \lor Q \Longrightarrow Q$ $I_{11} \quad P, P \to Q \Longrightarrow Q$ $I_{12} \quad \neg Q, P \rightarrow Q \Rightarrow \neg P$ $I_{13} \quad P \to Q, Q \to R \Longrightarrow P \to R \quad (hypothetical syllogism)$ $P \lor Q, P \to R, Q \to R \Longrightarrow R$ I14

(disjunctive syllogism) (modus ponens) (modus tollens) (dilemma)

Demonstrate that R is a valid inference from the premises $P \rightarrow Q, Q \rightarrow R$ and P

Solution

- 1) $P \rightarrow Q$ Rule P
- 2) P Rule P
- 3) Q Rule T,(1)(2) and Modus Ponens
- 4) $Q \rightarrow R$ Rule P
- 5) R Rule T,(3,4) and Modus Ponens

MODULE V

REFERENCE:

DISCRETE MATHEMATICAL STRUCTURES WITH APPLICATIONS TO COMPUTER SCIENCE -J.P. TREMBLAY & R. MANOHAR

TOPICS

• Propositional Logic : Propositions Logical Connectives Truth tables **Tautologies and Contradictions** Contra positive Logical Equivalences and Implications • Rules of Inference : Validity of arguments

Propositional Logic

Propositional Logic is the logic of compound statements built from simpler statements using socalled Boolean connectives.

Some applications in computer science:

- Design of digital electronic circuits.
- Expressing conditions in programs.
- Queries to databases & search engines.

• A *proposition* is a statement that is either true (T) or false (F).

• A proposition (statement) may be denoted by a variable like P, Q, R,..., called a proposition (statement) variable.

Propositions

Examples

- Propositions:
- 1. I am a man.
- 2. I am taller than 170 cm.
- 3. You are studying in Baptist U.
- 4. 1 + 1 = 3.
- Not propositions:
- 1. How are you?
- 2. Go to catch the dog.
- 3. I like this color.

Truth Table

• A *truth table* displays the relationships between the truth values of propositions.

• Truth tables are especially valuable in the determination of the truth values of propositions constructed from simpler propositions.

Logical Operators (Connectives)

Sr. No.	Connective	Symbol	Compound statement
1	AND	Λ	Conjunction
2	OR	\vee	Disjunction
3	NOT	¬	Negation
4	XOR	\oplus	Exclusive-OR
5	Ifthen	\rightarrow	Conditional or implication
6	If and only if (iff)	\leftrightarrow	Biconditional

Conjunction

Let p and q be propositions. The proposition "p and q", denoted by $p \land q$, is the proposition that is true when both p and q are true and is false otherwise.

The proposition $p \land q$ is called the **conjunction** of p and q.

p	${oldsymbol{q}}$	$p \wedge q$
Т	Т	Т
Т	F	F
F	Т	F
F	F	F

 Translate into symbolic form of the statement Jack and Jill went up the hill • P : Jack went up the hill • Q: Jill went up the hill • Statement can be written as P_AQ

Disjunction

The proposition "p or q", denoted by $p \lor q$, is the proposition that is false when pand q are both false and true otherwise. The proposition $p \vee$ q is called the **disjunction** of p and q.

р	q	$p \lor q$
Т	Т	Т
Т	F	Т
F	Т	Т
F	F	F

Negation of a Proposition

Let *p* be a proposition. The statement "It is not the case that *p*" is another proposition, called the *negation of p*. The negation of *p* is denoted by $\neg p$ and read "not *p*". **Example**

P : "It is a sunny day."

 $\neg p$: "It is not the case that it is a sunny day.", or

p	ר <i>p</i>
Τ	F
F	Т

simply "It is not a sunny day."

Exclusive Or

Let *p* and *q* be propositions. The *exclusive or* of *p* and *q*, denoted by true when exactly one of *p* and *q* is true and is false otherwise.

p	q	$p \oplus q$
Т	Т	F
Т	F	Т
F	Т	Т
F	F	F

Construct a truth table for P $\vee \neg Q$

Ρ	Q	¬Q	P ∨ ¬Q
Т	Т	F	Т
Т	F	Т	Т
F	Т	F	F
F	F	Т	Т

Conditional Propositions

Implication

Let *p* and *q* be propositions. The *implication* $p \rightarrow q$ is the proposition that is false when *p* is true and *q* is false and true otherwise.

• In this implication, *p* is called the *hypothesis* and *q* is called the *conclusion*.

p	\boldsymbol{q}	$p \rightarrow q$
Т	Т	Т
Т	F	F
F	Т	Т
F	F	Т

Remarks:

- Equivalent expressions of implication
- 1. if p, then q
- 2. p is sufficient for q
- 3. p implies q
- 4. p only if q
- 5. q is necessary for p
- Related Implications
- 1. $q \rightarrow p$ is called the converse of $p \rightarrow q$
- 2. $\neg q \rightarrow \neg p$ is called the contrapositive of $p \rightarrow q$

Biconditional

Let *p* and *q* be propositions. The *biconditional* $p \leftrightarrow q$ is the proposition that is true when *p* and q have the same truth values and is false otherwise. • In this biconditional, p is necessary and sufficient for q, or *p* if and only if *q*.

p	q	$p \leftrightarrow q$
Т	Τ	Τ
Т	F	F
F	Т	F
F	F	Т

• Converse:

If $P \rightarrow Q$ is an implication then $Q \rightarrow P$ is called the converse of $P \rightarrow Q$

• Contra positive :

If $P \rightarrow Q$ is an implication then the implication $\neg Q \rightarrow \neg P$ is called it's contra positive.

Inverse:

If $P \rightarrow Q$ is a an implication then $\neg P \rightarrow \neg Q$ is called its inverse.

Example 6:

Let P: You are good in Mathematics.
Q: You are good in Logic.
Then, P→Q : If you are good in Mathematics then you are good in Logic.

1) Converse: $(Q \rightarrow P)$ If you are good in Logic then you are good in Mathematics.

2) Contra positive: $\neg Q \rightarrow \neg P$ If you are not good in Logic then you are not good in Mathematics.

3) Inverse: $(\neg P \rightarrow \neg Q)$ If you are not good in Mathematics then you are not good in Logic.

Tautology, Contradiction and Contingency

• A compound proposition that is always true, no matter what the truth values of the propositions that occur in it, is called a *tautology*.

- A compound proposition that is always false is called a *contradiction*.
- A proposition that is neither a tautology nor a contradiction is called a *contingency*.

• Truth table of examples of a tautology and a contradiction

p	ר <i>p</i>	$p \lor \neg p$	$p \land \neg p$
Т	F	Т	F
F	Т	Т	F

Logically Equivalent

•The propositions p and q are called logically equivalent if $p \leftrightarrow q$ is a tautology.

• The notation $p \Leftrightarrow q$ denotes that p and q are logically equivalent.

• The following truth table shows that the compound propositions logically equivalent.

р	q	$p \lor q$	$\neg(p \lor q)$	$\neg p$	$\neg q$	$\neg p \land \neg q$
Т	Т	Т	F	F	F	F
Т	F	Т	F	F	Т	F
F	Т	Т	F	Т	F	F
F	F	F	Т	Т	Т	Т

Complete the following truth table to show that ¬*p* ∨ *q* and *p* → *q* are logically equivalent.

р	q	ר p	$\neg p \lor q$	$p \rightarrow q$
Т	Т			
Т	F			
F	Т			
F	F			

Logical Equivalences

Equivalence	Name
$ \begin{array}{l} p \land T \Leftrightarrow p \\ p \lor F \Leftrightarrow p \end{array} $	Identity laws
$\begin{array}{c} p \lor T \Leftrightarrow T \\ p \land F \Leftrightarrow F \end{array}$	Domination laws
$ \begin{array}{c} p \land p \Leftrightarrow p \\ p \lor p \Leftrightarrow p \end{array} $	Idempotent laws
$\neg(\neg p) \Leftrightarrow p$	Double negative law
$ p \lor q \Leftrightarrow q \lor p p \land q \Leftrightarrow q \land p $	Commutative laws
$ \begin{pmatrix} p \lor q \end{pmatrix} \lor r \Leftrightarrow p \lor (q \lor r) \\ (p \land q) \land r \Leftrightarrow p \land (q \land r) $	Associative laws
$p \lor (q \land r) \Leftrightarrow (p \lor q) \land (p \lor r)$ $p \land (q \lor r) \Leftrightarrow (p \land q) \lor (p \land r)$	Distributive laws
$\neg (p \land q) \Leftrightarrow \neg p \lor \neg q \neg (p \lor q) \Leftrightarrow \neg p \land \neg q$	De Morgan's laws
$p \to q \Leftrightarrow \neg p \lor q$	
Double Negative	$\neg (\neg p) \Leftarrow \Rightarrow p$
Absorption	$p \lor (p \land q) \Leftarrow p$ $p \land (p \lor q) \Leftarrow p$

Logical Equivalence Involving Implications :

- Let P & Q be two statements.
- The following table displays some useful equivalences for implications involving conditional and biconditional statements.

Sr. No.	Logical Equivalence involving implications	
1	$\mathbf{P} \to \mathbf{Q} \equiv \neg \mathbf{P} \lor \mathbf{Q}$	
2	$P \to Q \equiv \neg Q \to \neg P$	
3	$P \lor Q \equiv \neg P \to Q$	
4	$\mathbf{P} \wedge \mathbf{Q} \equiv \neg \left(\mathbf{P} \rightarrow \neg \mathbf{Q} \right)$	
5	$\neg (P \rightarrow Q) \equiv P \land \neg Q$	
6	$(P \rightarrow Q) \land (P \rightarrow r) \equiv P \rightarrow (Q \land r)$	
7	$(P \rightarrow r) \land (Q \rightarrow r) \equiv (P \lor Q) \rightarrow r \qquad P \lor \neg Q$	
8	$(P \rightarrow Q) \lor (P \rightarrow r) \equiv P \rightarrow (Q \lor r)$	
9	$(P \rightarrow r) \lor (Q \rightarrow r) \equiv (P \land Q)r$	
10	$P \leftrightarrow Q \equiv (P \rightarrow Q) \land (Q \rightarrow P)$	
11	$P \leftrightarrow Q \equiv \neg P \leftrightarrow \neg Q$	
12	$P \leftrightarrow Q \equiv (P \land Q) \lor (\neg P \land \neg Q)$	
13	$\neg (P \leftrightarrow Q) \equiv P \leftrightarrow \neg Q$	

Well ordered Formulas

- A compound statement obtained from statement letters by using one or more connectives is called a statement pattern or statement form.
- Thus, if P, Q, R, ... are the statements (which can be treated as variables) then any statement involving these statements and the logical connectives ¬, ^,∨,→,↔ is a statement form or a well ordered formula or statement pattern.
- Any statement involving propositional variable and logical connectives is a well formed formula

RULES OF INFERENCE

- Rule P: A premise may be introduced at any point in the derivation
- Rule T : A formula S may be introduced in the derivation if S is tautologically implied by any one or more of the preceding formulas in the derivation.

Table 1-4.3 EQUIVALENCES

(double negation) $\neg \neg P \Leftrightarrow P$ E_1 $P \land Q \Leftrightarrow Q \land P$ E_2 (commutative laws) $E_3 \qquad P \lor Q \Leftrightarrow Q \lor P$ $E_4 \qquad (P \land Q) \land R \Leftrightarrow P \land (Q \land R)$ (associative laws) $E_5 \qquad (P \lor Q) \lor R \Leftrightarrow P \lor (Q \lor R)$ $P \land (Q \lor R) \Leftrightarrow (P \land Q) \lor (P \land R)$ E (distributive laws) $P \lor (Q \land R) \Leftrightarrow (P \lor Q) \land (P \lor R)$ E $\neg (P \land Q) \Leftrightarrow \neg P \lor \neg Q$ E_8 (De Morgan's laws) $\neg (P \lor Q) \Leftrightarrow \neg P \land \neg Q$ E9 $P \lor P \Leftrightarrow P$ E10 $P \land P \Leftrightarrow P$ E_{11} $R \lor (P \land \neg P) \Leftrightarrow R$ E12 $R \land (P \lor \neg P) \Leftrightarrow R$ E13 $R \lor (P \lor \neg P) \Leftrightarrow \mathbf{T}$ E14 $R \land (P \land \neg P) \Leftrightarrow \mathbf{F}$ E15 $P \rightarrow Q \Leftrightarrow \neg P \lor Q$ E16 $\neg (P \rightarrow Q) \Leftrightarrow P \land \neg Q$ E17 $P \rightarrow Q \Leftrightarrow \neg Q \rightarrow \neg P$ **E**18 $P \rightarrow (Q \rightarrow R) \Leftrightarrow (P \land Q) \rightarrow R$ E19 $\neg (P \rightleftharpoons Q) \Leftrightarrow P \rightleftharpoons \neg Q$ E20 $P \rightleftharpoons Q \Leftrightarrow (P \to Q) \land (Q \to P)$ En $(P \rightleftharpoons Q) \Leftrightarrow (P \land Q) \lor (\neg P \land \neg Q)$ E22

Table 1-4.2 IMPLICATIONS

 $P \land Q \Longrightarrow P$ I_1 (simplification) $P \land Q \Longrightarrow Q$ I2 $P \Longrightarrow P \lor Q$ Iz (addition) $Q \Longrightarrow P \lor Q$ I. $I_5 \quad \neg P \Longrightarrow P \to Q$ $Q \Longrightarrow P \to Q$ Is $\neg (P \rightarrow Q) \Longrightarrow P$ I7 $\neg (P \rightarrow Q) \Rightarrow \neg Q$ Is $P, Q \Longrightarrow P \land Q$ I9 $\neg P, P \lor Q \Longrightarrow Q$ I10 $P, P \rightarrow Q \Longrightarrow Q$ In $\neg Q, P \rightarrow Q \Longrightarrow \neg P$ I 12 $P \to Q, Q \to R \Longrightarrow P \to R$ I13 $P \lor Q, P \to R, Q \to R \Longrightarrow R$ I14

(disjunctive syllogism) (modus ponens) (modus tollens) (hypothetical syllogism) (dilemma)

Demonstrate that R is a valid inference from the premises $P \rightarrow Q, Q \rightarrow R$ and P

Solution

- 1) $P \rightarrow Q$ Rule P
- 2) P Rule P
- 3) Q Rule T,(1)(2) and Modus Ponens
- 4) $Q \rightarrow R$ Rule P
- 5) R Rule T,(3,4) and Modus Ponens