
Process Concept
 An operating system executes a variety of programs:

 Batch system – jobs

 Time-shared systems – user programs or tasks

 Textbook uses the terms job and process almost interchangeably
Process – a program in execution; process execution must progress in sequential fashion
A process includes:

 program counter

 stack

 data section

Process in Memory

Process State

As a process executes, it changes stat

 new: The process is being created

 running: Instructions are being executed

 waiting: The process is waiting for some event to occur

 ready: The process is waiting to be assigned to a processor

 terminated: The process has finished execution

Diagram of Process State

Process Control Block (PCB)

Information associated with each process

 Process state

 Program counter

 CPU registers

 CPU scheduling information

 Memory-management information

 Accounting information

 I/O status information

CPU Switch From Process to Process

Process Scheduling Queues

 Job queue – set of all processes in the system

 Ready queue – set of all processes residing in main memory, ready and waiting to
execute

 Device queues – set of processes waiting for an I/O device

 Processes migrate among the various queues

Ready Queue And Various I/O Device Queues

Representation of Process Scheduling

Schedulers
 Long-term scheduler (or job scheduler) – selects which processes should be brought

into the ready queue

 Short-term scheduler (or CPU scheduler) – selects which process should be
executed next and allocates CPU

Addition of Medium Term Scheduling

 Short-term scheduler is invoked very frequently (milliseconds) Þ (must be fast)

 Long-term scheduler is invoked very infrequently (seconds, minutes) Þ (may be slow)

 The long-term scheduler controls the degree of multiprogramming

 Processes can be described as either:

 I/O-bound process – spends more time doing I/O than computations, many short CPU
bursts

 CPU-bound process – spends more time doing computations; few very long CPU
bursts

Context Switch
 When CPU switches to another process, the system must save the state of the old

process and load the saved state for the new process via a context switch

 Context of a process represented in the PCB

 Context-switch time is overhead; the system does no useful work while switching

 Time dependent on hardware support

Process Creation
 Parent process create children processes, which, in turn create other processes,

forming a tree of processes

 Generally, process identified and managed via a process identifier (pid)

 Resource sharing

 Parent and children share all resources

 Children share subset of parent’s resources

 Parent and child share no resources

 Execution

 Parent and children execute concurrently

 Parent waits until children terminate

 Address space

 Child duplicate of parent

 Child has a program loaded into it

 UNIX examples

 fork system call creates new process

 exec system call used after a fork to replace the process’ memory space with a new
program

Process Creation

C Program Forking Separate Process

int main()

{

pid_t pid;

 /* fork another process */

 pid = fork();

 if (pid < 0) { /* error occurred */

 fprintf(stderr, "Fork Failed");

 exit(-1);

 }

 else if (pid == 0) { /* child process */

 execlp("/bin/ls", "ls", NULL);

 }

 else { /* parent process */

 /* parent will wait for the child to complete */

 wait (NULL);

 printf ("Child Complete");

 exit(0);

 }

}

A tree of processes on a typical Solaris

Process Termination

 Process executes last statement and asks the operating system to delete it (exit)

 Output data from child to parent (via wait)

 Process’ resources are deallocated by operating system

 Parent may terminate execution of children processes (abort)

 Child has exceeded allocated resources

 Task assigned to child is no longer required

 If parent is exiting
Some operating system do not allow child to continue if its parent terminates

All children terminated - cascading termination

Interprocess Communication
 Processes within a system may be independent or cooperating

 Cooperating process can affect or be affected by other processes, including sharing
data

 Reasons for cooperating processes:

 Information sharing

 Computation speedup

 Modularity

 Convenience

 Cooperating processes need interprocess communication (IPC)

 Two models of IPC

 Shared memory

 Message passing

Communications Models

Cooperating Processes

 Independent process cannot affect or be affected by the execution of another process

 Cooperating process can affect or be affected by the execution of another process
Advantages of process cooperation

 Information sharing

 Computation speed-up

 Modularity

 Convenience

Producer-Consumer Problem
 Paradigm for cooperating processes, producer process produces information that is

consumed by a consumer process

 unbounded-buffer places no practical limit on the size of the buffer

 bounded-buffer assumes that there is a fixed buffer size

Bounded-Buffer – Shared-Memory Solution
Shared data

#define BUFFER_SIZE 10
typedef struct {
 . . .
} item;
item buffer[BUFFER_SIZE];
int in = 0;
int out = 0;
Solution is correct, but can only use BUFFER_SIZE-1 elements

Bounded-Buffer – Producer
 while (true) {

 /* Produce an item */

 while (((in = (in + 1) % BUFFER SIZE count) == out)

 ; /* do nothing -- no free buffers */

 buffer[in] = item;

 in = (in + 1) % BUFFER SIZE;

 }

Bounded Buffer – Consumer
while (true) {

 while (in == out)

 ; // do nothing -- nothing to consume

 // remove an item from the buffer

 item = buffer[out];

 out = (out + 1) % BUFFER SIZE;

 return item;

 }

Interprocess Communication – Message Passing
 Mechanism for processes to communicate and to synchronize their actions

 Message system – processes communicate with each other without resorting to shared
variables

 IPC facility provides two operations:

 send(message) – message size fixed or variable

 receive(message)

 If P and Q wish to communicate, they need to:

 establish a communication link between them

 exchange messages via send/receive

 Implementation of communication link

 physical (e.g., shared memory, hardware bus)

 logical (e.g., logical properties)

Direct Communication
 Processes must name each other explicitly:

 send (P, message) – send a message to process P

 receive(Q, message) – receive a message from process Q

 Properties of communication link

 Links are established automatically

 A link is associated with exactly one pair of communicating processes

 Between each pair there exists exactly one link

 The link may be unidirectional, but is usually bi-directional

Indirect Communication
 Messages are directed and received from mailboxes (also referred to as ports)

 Each mailbox has a unique id

 Processes can communicate only if they share a mailbox

 Properties of communication link

 Link established only if processes share a common mailbox

 A link may be associated with many processes

 Each pair of processes may share several communication links

 Link may be unidirectional or bi-directional

 Operations

 create a new mailbox

 send and receive messages through mailbox

 destroy a mailbox

 Primitives are defined as:

 send(A, message) – send a message to mailbox A

 receive(A, message) – receive a message from mailbox A

 Mailbox sharing

 P1, P2, and P3 share mailbox A

 P1, sends; P2 and P3 receive

 Who gets the message?

 Solutions

 Allow a link to be associated with at most two processes

 Allow only one process at a time to execute a receive operation

 Allow the system to select arbitrarily the receiver. Sender is notified who the receiver
was.

Synchronization
 Message passing may be either blocking or non-blocking

 Blocking is considered synchronous

 Blocking send has the sender block until the message is received

 Blocking receive has the receiver block until a message is available

 Non-blocking is considered asynchronous

 Non-blocking send has the sender send the message and continue

 Non-blocking receive has the receiver receive a valid message or null

Buffering
Queue of messages attached to the link; implemented in one of three ways
1. Zero capacity – 0 messages
Sender must wait for receiver (rendezvous)
2. Bounded capacity – finite length of n messages
Sender must wait if link full
3. Unbounded capacity – infinite length
Sender never waits

Examples of IPC Systems - POSIX
 POSIX Shared Memory

 Process first creates shared memory segment

 segment id = shmget(IPC PRIVATE, size, S IRUSR | S IWUSR);

 Process wanting access to that shared memory must attach to it

 shared memory = (char *) shmat(id, NULL, 0);

 Now the process could write to the shared memory

 printf(shared memory, "Writing to shared memory");

 When done a process can detach the shared memory from its address space

 shmdt(shared memory);

Examples of IPC Systems - Mach
 Mach communication is message based

 Even system calls are messages

 Each task gets two mailboxes at creation- Kernel and Notify

 Only three system calls needed for message transfer

 msg_send(), msg_receive(), msg_rpc()

 Mailboxes needed for commuication, created via

 port_allocate()

Examples of IPC Systems – Windows XP
 Message-passing centric via local procedure call (LPC) facility

 Only works between processes on the same system

 Uses ports (like mailboxes) to establish and maintain communication channels

 Communication works as follows:
The client opens a handle to the subsystem’s connection port object
The client sends a connection request
The server creates two private communication ports and returns the handle to one of

them to the client
The client and server use the corresponding port handle to send messages or

callbacks and to listen for replies

Local Procedure Calls in Windows XP

Communications in Client-Server Systems
 Sockets

 Remote Procedure Calls

 Remote Method Invocation (Java)

Sockets
 A socket is defined as an endpoint for communication

 Concatenation of IP address and port

 The socket 161.25.19.8:1625 refers to port 1625 on host 161.25.19.8

 Communication consists between a pair of sockets

Socket Communication

Remote Procedure Calls

 Remote procedure call (RPC) abstracts procedure calls between processes on
networked systems

 Stubs – client-side proxy for the actual procedure on the server

 The client-side stub locates the server and marshalls the parameters

 The server-side stub receives this message, unpacks the marshalled parameters, and
peforms the procedure on the server

Execution of RPC

Remote Method Invocation
 Remote Method Invocation (RMI) is a Java mechanism similar to RPCs

 RMI allows a Java program on one machine to invoke a method on a remote object

Marshalling Parameters

Threads

 To introduce the notion of a thread — a fundamental unit of CPU utilization that forms
the basis of multithreaded computer systems

 To discuss the APIs for the Pthreads, Win32, and Java thread libraries

 To examine issues related to multithreaded programming

Single and Multithreaded Processes

Benefits
 Responsiveness

 Resource Sharing

 Economy

 Scalability
Multicore Programming
Multicore systems putting pressure on programmers, challenges include

 Dividing activities

 Balance

 Data splitting

 Data dependency

 Testing and debugging

Multithreaded Server Architecture

Concurrent Execution on a Single-core System

Parallel Execution on a Multicore System

User Threads
 Thread management done by user-level threads libraryThree primary thread libraries:

 POSIX Pthreads Win32 threads

 Java threads

Kernel Threads
Supported by the Kernel
Examples

 Windows XP/2000

 Solaris

 Linux

 Tru64 UNIX

 Mac OS X

Multithreading Models
 Many-to-One

 One-to-One

 Many-to-Many

Many-to-One
Many user-level threads mapped to single kernel thread
Examples:

 Solaris Green Threads

 GNU Portable Threads

One-to-One
Each user-level thread maps to kernel thread
Examples
Windows NT/XP/2000
Linux
Solaris 9 and later

Many-to-Many Model
 Allows many user level threads to be mapped to many kernel threads

 Allows the operating system to create a sufficient number of kernel threads

 Solaris prior to version 9
Windows NT/2000 with the ThreadFiber package

Two-level Model
Similar to M:M, except that it allows a user thread to be bound to kernel thread
Examples

 IRIX

 HP-UX

 Tru64 UNIX

 Solaris 8 and earlier

Thread Libraries

 Thread library provides programmer with API for creating and managing threads

 Two primary ways of implementing

 Library entirely in user space

 Kernel-level library supported by the OS

Pthreads
 May be provided either as user-level or kernel-level

 A POSIX standard (IEEE 1003.1c) API for thread creation and synchronization

 API specifies behavior of the thread library, implementation is up to development of the
library

 Common in UNIX operating systems (Solaris, Linux, Mac OS X)

Java Threads
 Java threads are managed by the JVM

 Typically implemented using the threads model provided by underlying OS

 Java threads may be created by:Extending Thread class

 Implementing the Runnable interface
Threading Issues

 Semantics of fork() and exec() system calls

 Thread cancellation of target thread

 Asynchronous or deferred

 Signal handling

 Thread pools

 Thread-specific data

 Scheduler activations

Thread Cancellation
 Terminating a thread before it has finished

 Two general approaches:

 Asynchronous cancellation terminates the target thread immediately

 Deferred cancellation allows the target thread to periodically check if it should be
cancelled

Signal Handling
 Signals are used in UNIX systems to notify a process that a particular event has

occurred

 A signal handler is used to process signals

 1.Signal is generated by particular event

 2.Signal is delivered to a process

 3.Signal is handled

 Options:

 Deliver the signal to the thread to which the signal applies

 Deliver the signal to every thread in the process

 Deliver the signal to certain threads in the process

 Assign a specific threa to receive all signals for the process
Thread Pools

 Create a number of threads in a pool where they await work

 Advantages:

 Usually slightly faster to service a request with an existing thread than create a new
thread

 Allows the number of threads in the application(s) to be bound to the size of the pool

Thread Specific Data
 Allows each thread to have its own copy of data

 Useful when you do not have control over the thread creation process (i.e., when using
a thread pool)

Scheduler Activations
 Both M:M and Two-level models require communication to maintain the appropriate

number of kernel threads allocated to the application

 Scheduler activations provide upcalls - a communication mechanism from the kernel to
the thread library

 This communication allows an application to maintain the correct number kernel
threads

Windows XP Threads

Implements the one-to-one mapping, kernel-level

 Each thread contains

 A thread id

 Register set

 Separate user and kernel stacks

 Private data storage area

 The register set, stacks, and private storage area are known as the context of the
threads

 The primary data structures of a thread include:

 ETHREAD (executive thread block)

 KTHREAD (kernel thread block)

 TEB (thread environment block)

Linux Threads

 Linux refers to them as tasks rather than threads

 Thread creation is done through clone() system call

 clone() allows a child task to share the address space of the parent task (process)

CPU Scheduling
 To introduce CPU scheduling, which is the basis for multiprogrammed operating

systems

 To describe various CPU-scheduling algorithms

 To discuss evaluation criteria for selecting a CPU-scheduling algorithm for a particular
system

 Maximum CPU utilization obtained with multiprogramming

 CPU–I/O Burst Cycle – Process execution consists of a cycle of CPU execution and I/O
wait

 CPU burst distribution

Histogram of CPU-burst Times

Alternating Sequence of CPU And I/O Bursts

CPU Scheduler
Selects from among the processes in memory that are ready to execute, and allocates the
CPU to one of them
CPU scheduling decisions may take place when a process:
1. Switches from running to waiting state
2. Switches from running to ready state
3. Switches from waiting to ready
4. Terminates
Scheduling under 1 and 4 is nonpreemptive
All other scheduling is preemptive
Dispatcher

 Dispatcher module gives control of the CPU to the process selected by the short-term
scheduler; this involves:

 switching context

 switching to user mode

 jumping to the proper location in the user program to restart that program

 Dispatch latency – time it takes for the dispatcher to stop one process and start
another running

Scheduling Criteria
 CPU utilization – keep the CPU as busy as possible

 Throughput – # of processes that complete their execution per time unit

 Turnaround time – amount of time to execute a particular process

 Waiting time – amount of time a process has been waiting in the ready queue

 Response time – amount of time it takes from when a request was submitted until the
first response is produced, not output (for time-sharing environment)

 Max CPU utilization

 Max throughput

 Min turnaround time

 Min waiting time

 Min response time

First-Come, First-Served (FCFS) Scheduling
Process Burst Time
P1 24

 P2 3

 P3 3

Suppose that the processes arrive in the order: P1 , P2 , P3

The Gantt Chart for the schedule is:

Waiting time for P1 = 0; P2 = 24; P3 = 27

Average waiting time: (0 + 24 + 27)/3 = 17
Suppose that the processes arrive in the order
 P2 , P3 , P1

The Gantt chart for the schedule is:Waiting time for P1 = 6; P2 = 0; P3 = 3Average

waiting time: (6 + 0 + 3)/3 = 3
Much better than previous case
Convoy effect short process behind long process

 P1 P2 P3

24 27 30 0

 P1 P3 P2

6 3 30 0

Shortest-Job-First (SJF) Scheduling

 Associate with each process the length of its next CPU burst. Use these lengths to
schedule the process with the shortest time

 SJF is optimal – gives minimum average waiting time for a given set of processes
The difficulty is knowing
 Process Arrival Time Burst Time

 P1 0.0 6

 P2 2.0 8

 P3 4.0 7

 P4 5.0 3

SJF scheduling chart
verage waiting time = (3 + 16 + 9 + 0) / 4 = 7the length of the next CPU request

Determining Length of Next CPU Burst

 Can only estimate the length

 Can be done by using the length of previous CPU bursts, using exponential averaging

Prediction of the Length of the Next CPU Burst

 P4 P3 P1

3 16 0 9

P2

24

:Define 4.

10 , 3.

burst CPU next the for value predicted 2.

burst CPU of length actual 1.











 1n

th
n nt

Examples of Exponential Averaging
a =0
tn+1 = tn

Recent history does not count
a =1
 tn+1 = a tn

Only the actual last CPU burst counts
If we expand the formula, we get:
tn+1 = a tn+(1 - a)a tn -1 + …

 +(1 - a)j a tn -j + …

 +(1 - a)n +1 t0

Since both a and (1 - a) are less than or equal to 1, each successive term has less weight

than its predecessor

Priority Scheduling
 A priority number (integer) is associated with each process

 The CPU is allocated to the process with the highest priority (smallest integer º highest

priority)

 Preemptive

 nonpreemptive

 SJF is a priority scheduling where priority is the predicted next CPU burst time

 Problem º Starvation – low priority processes may never execute

 Solution º Aging – as time progresses increase the priority of the process

Round Robin (RR)

 Each process gets a small unit of CPU time (time quantum), usually 10-100
milliseconds. After this time has elapsed, the process is preempted and added to the
end of the ready queue.

 If there are n processes in the ready queue and the time quantum is q, then each
process gets 1/n of the CPU time in chunks of at most q time units at once. No process
waits more than (n-1)q time units.

 Performance

 q large Þ FIFO

 q small Þ q must be large with respect to context switch, otherwise overhead is too high

Example of RR with Time Quantum = 4
Process Burst Time
P1 24

 P2 3

 P3 3

The Gantt chart is:

P1 P2 P3 P1 P1 P1 P1 P1

0 4 7 10 14 18 22 26 30

Typically, higher average turnaround than SJF, but better response

Time Quantum and Context Switch Time

Turnaround Time Varies With The Time Quantum

Multilevel Queue
 Ready queue is partitioned into separate queues:

foreground (interactive)
background (batch)

 Each queue has its own scheduling algorithm

 foreground – RR

 background – FCFS

 Scheduling must be done between the queues

 Fixed priority scheduling; (i.e., serve all from foreground then from background).
Possibility of starvation.

 Time slice – each queue gets a certain amount of CPU time which it can schedule
amongst its processes; i.e., 80% to foreground in RR

20% to background in FCFS

Multilevel Queue Scheduling

Multilevel Feedback Queue

 A process can move between the various queues; aging can be implemented this way

 Multilevel-feedback-queue scheduler defined by the following parameters:

 number of queues

 scheduling algorithms for each queue

 method used to determine when to upgrade a process

 method used to determine when to demote a process

method used to determine which queue a process will enter when that process needs service

Example of Multilevel Feedback Queue
Three queues:

 Q0 – RR with time quantum 8 milliseconds

 Q1 – RR time quantum 16 milliseconds

 Q2 – FCFS

 Scheduling

 A new job enters queue Q0 which is served FCFS. When it gains CPU, job receives 8

milliseconds. If it does not finish in 8 milliseconds, job is moved to queue Q1.

 At Q1 job is again served FCFS and receives 16 additional milliseconds. If it still does

not complete, it is preempted and moved to queue Q2.

Multilevel Feedback Queues

Thread Scheduling

 Distinction between user-level and kernel-level threads

 Many-to-one and many-to-many models, thread library schedules user-level threads to
run on LWP

 Known as process-contention scope (PCS) since scheduling competition is within the
process

 Kernel thread scheduled onto available CPU is system-contention scope (SCS) –
competition among all threads in system

Pthread Scheduling
 API allows specifying either PCS or SCS during thread creation

 PTHREAD SCOPE PROCESS schedules threads using PCS scheduling

 PTHREAD SCOPE SYSTEM schedules threads using SCS scheduling.

Pthread Scheduling API
#include <pthread.h>

#include <stdio.h>

#define NUM THREADS 5

int main(int argc, char *argv[])

{

 int i; pthread t tid[NUM THREADS];

 pthread attr t attr;

 /* get the default attributes */

 pthread attr init(&attr);

 /* set the scheduling algorithm to PROCESS or SYSTEM */

 pthread attr setscope(&attr, PTHREAD SCOPE SYSTEM);

 /* set the scheduling policy - FIFO, RT, or OTHER */

 pthread attr setschedpolicy(&attr, SCHED OTHER);

 /* create the threads */

 for (i = 0; i < NUM THREADS; i++)

 pthread create(&tid[i],&attr,runner,NULL);

/* now join on each thread */

 for (i = 0; i < NUM THREADS; i++)

 pthread join(tid[i], NULL);

}

 /* Each thread will begin control in this function */
void *runner(void *param)

{

 printf("I am a thread\n");

 pthread exit(0);

}

Multiple-Processor Scheduling

 CPU scheduling more complex when multiple CPUs are available

 Homogeneous processors within a multiprocessor

 Asymmetric multiprocessing – only one processor accesses the system data
structures, alleviating the need for data sharing

 Symmetric multiprocessing (SMP) – each processor is self-scheduling, all
processes in common ready queue, or each has its own private queue of ready
processes

 Processor affinity – process has affinity for processor on which it is currently running

 soft affinity

 hard affinity

NUMA and CPU Scheduling

Multicore Processors

 Recent trend to place multiple processor cores on same physical chip

 Faster and consume less power

 Multiple threads per core also growing

 Takes advantage of memory stall to make progress on another thread while memory
retrieve happens

Multithreaded Multicore System

Operating System Examples

 Solaris scheduling

 Windows XP scheduling

 Linux scheduling

Solaris Dispatch Table

Solaris Scheduling

Windows XP Priorities

Linux Scheduling

 Constant order O(1) scheduling time

 Two priority ranges: time-sharing and real-time

 Real-time range from 0 to 99 and nice value from 100 to 140

Priorities and Time-slice length

List of Tasks Indexed According to Priorities

Algorithm Evaluation

 Deterministic modeling – takes a particular predetermined workload and defines the
performance of each algorithm for that workload

 Queueing models

 Implementation
Evaluation of CPU schedulers by Simulation

