EECS150 - Digital Design
 Lecture 23 - Arithmetic and Logic Circuits Part 4

April 19, 2005
John Wawrzynek

Outline

- Shifters / Rotators
- Fixed shift amount
- Variable shift amount
- Multiplication Revisited
- Fixed multiplication value (multiplication by a constant)
- Variable multiplication value (done last week)

Fixed Shifters / Rotators

- "fixed" shifters "hardwire" the shift amount into the circuit.
- Ex: $X \gg 2$
- (right shift X by 2 places)
- Fixed shift/rotator is nothing but wires!
 So what?

Variable Shifters / Rotators

- Example: $\mathrm{X} \gg \mathrm{S}$, where S is unknown when we design and build the circuit.
- Uses: shift instruction in processors (ARM includes a shift on every instruction), floating-point arithmetic, division/multiplication by powers of 2 , etc.
- One way to build this is a simple shift-register:
a) Load word, b) shift enable for Scycles, c) read word.

- Worst case delay $\mathrm{O}(\mathrm{N})$, not good for processor design.
- Can we do it in $\mathrm{O}(\log \mathrm{N})$ time and fit it in one cycle?

Funnel Shifter / Rotator

- $\log (N)$ stages, each shifts (or not) by a power of 2 places, $S=\left[\mathrm{s}_{2} ; \mathrm{s}_{1} ; \mathrm{s}_{0}\right]$:

"Improved" Shifter / Rotator

- How about this approach? Could it lead to even less delay?

- What is the delay of these big muxes?
- How about a transistor-level optimization.

Multiplication Revisited

- Our discussion so far has assumed both the multiplicand (A) and the multiplier (B) can vary at runtime.
- What if one of the two is a constant?

$$
Y=C * X
$$

- "Constant Coefficient" multiplication comes up often in signal processing and other hardware. Ex:

$$
y_{i}=\alpha y_{i-1}+x_{i} \quad x_{i} \rightarrow \square \longrightarrow y_{i}
$$

where α is an application dependent constant that is hard-wired into the circuit.

- How do we build and array style (combinational) multiplier that takes advantage of the constancy of one of the operands?

Multiplication by a Constant

- If the constant C in $\mathrm{C}^{*} \mathrm{X}$ is a power of 2 , then the multiplication is simply a shift of X.
- Ex: $4^{*} X$

- What about division?
- What about multiplication by non- powers of 2?

Multiplication by a Constant

- In general, a combination of fixed shifts and addition:
$-E x: 6^{*} X=0110 * X=\left(2^{2}+2^{1}\right)^{*} X$

- Details:

Multiplication by a Constant

- Another example: $\mathrm{C}=23_{10}=010111$

- In general, ıne murnver or auanums equals ome minus the number of 1's in the constant, C.
- Using carry-save adders (for all but one of these) helps reduce the delay and cost, but the number of adders is still the number of 1 's in C minus 1 .
- Is there a way to further reduce the number of adders (and thus the cost and delay)?

Multiplication using Subtraction

- Subtraction is the same cost and delay as addition.
- Consider C*X where C is the constant value $15_{10}=01111$.
- C*X requires 3 adders (probably 2 CSA and 1 CPA).
- We can "recode" 15

$$
\text { from } 01111=\left(2^{3}+2^{2}+2^{1}+2^{0}\right)
$$

$$
\text { to } \quad 1000 \overline{1}=\left(2^{4}-2^{0}\right)
$$

where $\overline{1}$ means negative weight.

- Therefore, $15^{*} \mathrm{X}$ can be implemented with only one subtractor.

Canonic Signed Digit Representation

- CSD represents numbers using $1, \overline{1}, \& 0$ with the least possible number of non-zero digits.
- Strings of 2 or more non-zero digits are replaced.
- Leads to a unique representation.
- To form CSD representation might take 2 passes:
- First pass: replace all occurrences of 2 or more 1's:
$01 . .10$ by $10 . . \overline{10}$
- Second pass: same as a above, plus replace $0 \overline{1} 10$ by $00 \overline{10}$
- Examples:

$$
\begin{array}{lll}
011101=29 & 0010111=23 & 0110110=54 \\
100 \overline{0} 01=32-4+1 & 001100 \overline{1}= & 10 \overline{1} 10 \overline{1} 0 \\
& 010 \overline{1} 00 \overline{1}=32-8-1 & 100 \overline{1} 0 \overline{1} 0=64-8-2
\end{array}
$$

- Can we further simplify the multiplier circuits?

"Constant Coefficient Multiplication" (KCM)

Binary multiplier: $Y=231^{*} X=\left(2^{7}+2^{6}+2^{5}+2^{2}+2^{1}+2^{0}\right)^{*} X$

- CSD helps, but the multipliers are limited to shifts followed by adds.
- CSD multiplier: $Y=231^{*} X=\left(2^{8}-2^{5}+2^{3}-2^{0}\right)^{*} X$

- How about shift/add/shift/add ...?
- KCM multiplier: $Y=231^{*} X=7^{*} 33^{*} X=\left(2^{3}-2^{0}\right)^{*}\left(2^{5}+2^{0}\right)^{*} X$

- No simple algorithm exists to determine the optimal KCM representation.
- Most use exhaustive search method.

