EECS150 - Digital Design
Lecture 23 - Arithmetic and Loqic Circuits
Part 4

April 19, 2005
John Wawrzynek

Spring 2005 EECS150 - Lec23-alc4 Page 1

Outline

+ Shifters / Rotators
— Fixed shift amount
— Variable shift amount
* Multiplication Revisited
— Fixed multiplication value (multiplication by a constant)
— Variable multiplication value (done last week)

Spring 2005 EECS150 - Lec23-alc4 Page 2

Fixed Shifters / Rotators

“fixed” shifters “hardwire” .,

. . 5 X4 X3 X X4 X
the s_hlft amount into the *\L\L\T\T Logical
circuit.) Shift
¢ {

Ex: X>>2 Y7 Yg Y5 Y4 Y3 Yo Y1 Yo
— (right shift X by 2 places)

X7 X6 X5 X4 X3 X2 X1 XO

Fixed shift/rotator is Rotate

nothing but wires! Y7. %6 Y5 Y4 Y3 Y2 V1 Yo

So what? X7 Xg X5 X4 X3 Xp X Xg

Y7 Y Y5 Y4 Y3 VYo Y1 Yo

Spring 2005 EECS150 - Lec23-alc4 Page 3

Variable Shifters / Rotators

Example: X >> S, where S is unknown when we design and build the
circuit.

Uses: shift instruction in processors (ARM includes a shift on every
instruction), floating-point arithmetic, division/multiplication by powers
of 2, etc.

One way to build this is a simple shift-register:

a) Load word, b) shift enable for S cycles, c)read word.

X3l x2] x[1] x[0] LD Shift enable

from controller

! ! ! }

yi3l yi2l [l ylo]

Worst case delay O(N) , not good for processor design.

Can we do it in O(logN) time and fit it in one cycle?
Spring 2005 EECS150 - Lec23-alc4 Page 4

Funnel Shifter / Rotator

Log(N) stages, each shifts (or not) by a power of 2 places, S=[s,;s;;s):

)(7 X6 X5 X4 X3 X2 X1 XO
‘ Shift by N/2
| {
Sl e e O e i i O
[[L L L L L L
‘ Shift by 2
|
o e R E W B Eh B B oh B
C C C C C C C
‘ Shift by 1
1 T s s e R
I E R E e E
bird Y6 Y5 Ya Ya Yo Y1 Yo
Spring 2005 EECS150 - Lec23-alc4 Page 5
“Improved” Shifter / Rotator
How about this approach? Could it lead to even less delay?
X0
T I I i

765432107 "] \7654 10/ 76543 o/ \765432 utT 5
l Y

Y7 Yo ¥ Yo

What is the delay of these big muxes?
How about a transistor-level optimization.

Spring 2005 EECS150 - Lec23-alc4 Page 6

§|7X7 <76

Barrel Shifter

:‘7"3 :‘7"2

X1

v

§|7Xo

\\\Jj'

\\Jj'

\\Jj_
il
B

g >

JRG

o

JE

=

JEg

oo

o

,,,,,,,,,,

g >
i [:>_Y6

/7/_‘@

JRG

_
2
_
A
T ET|
q
T
t}

; ;jp ;j +

a9

GREG

m)j-

shift

decoder

il

amount 3

oo

Cost/delay?

— (don’t forget the
decoder)

Page 7

<
<
<5
<x

Connection Matrix

:‘7*2

X1

v

Yo

:‘7"0
Y

Eta

>

>

bl

>

>

J<TI = = = = R = Y =
y = = I B! R =
J< = = = B! RS = R
J< I I = B! RS = B

Spring 2005

I R R R RN
I R R

B8 5 A A B B o

EECS150 - Lec23-alc4

>

Generally useful structure:

— N2 control points.
— What other interesting

functions can it do?

Page 8

Cross-bar Switch

)’ VXG K?XS Vm §7X3 VXZ §7X1 VXO v Nlog(N) control
I'tL I'Itl I'tL |'|tL I‘lj "ItL I-I_—LL {>— 0 signals.
743.| 0] 1] 2] decolder] 5 | 6] 7| , . SUppOFtS all
> interesting
74»{ I-ELO |-¢L1]-ELZ HtL decolt;a |-lth l-th |{:L7| permutations
: LQ | I | I I I I {>_V2 — All one-to-one and
Y B Y B Y Y L one-to-many
74;{ 0 1 2 decoder 5 6 7 I connections.
LCL lHtL]}CL i—tL I}u i—q iﬂ i—lfL {>_y3 * Commonly used in
s — de°°|def — 7|{>_y4 communication
hardware (switches,
74>| Lilo |'¢L1 le H:L decolt;a I-I:LS Hth I-I:L7| rOUterS)-
: | 1 T | | [-
—,43>| l-I:Lo IH:L1 :{:Lz IH:L deco:c.ig]H_:Ls {{:Ls] 7] ,
N W W W
743>| [] 1 | 2] decolder] 5 l 6 | 7| ,
W W
74;1 [1 2 decoder 5 6 7| Page 9
Multiplication Revisited
a, a, a, a, +— Muiltiplicand
b, b, b, b, * Multiplier
X asb, a,b, ab, agb,
asb, ab, ab, a,b, Partial
asb, a,b, ab, ayb, products
asb; ab; asb; agb,
a,by+ayb, a,b, «— Product
Spring 2005 EECS150 - Lec23-alc4 Page 10

Multiplication Revisited

Our discussion so far has assumed both the multiplicand
(A) and the multiplier (B) can vary at runtime.

What if one of the two is a constant?

Y=C*X
“Constant Coefficient” multiplication comes up often in
signal processing and other hardware. Ex:

Yi= oyt X X — [y,

where « is an application dependent constant that is
hard-wired into the circuit.

How do we build and array style (combinational) multiplier
that takes advantage of the constancy of one of the
operands?

Spring 2005 EECS150 - Lec23-alc4 Page 11

Multiplication by a Constant

If the constant C in C*X is a power of 2, then the multiplication is
simply a shift of X.

Ex: 4*X

O=yo
x o \O:y1 .Y
Xp \Xo=y2
X3 \X1:V3
\X2=y4
X3=Y5

What about division?

What about multiplication by non- powers of 2?

Spring 2005 EECS150 - Lec23-alc4 Page 12

Multiplication by a Constant

* In general, a combination of fixed shifts and addition:
— Ex:6*X = 0110 * X = (22+ 2")*X
X

<< 2 <<1

: Y
— Details: 0 X3 X Xy Xg 0
Xal le X1J Xol
4-bit adder

R

Y5 Yq Y3 Yo Y1 Yo

Spring 2005 EECS150 - Lec23-alc4 Page 13

Multiplication by a Constant
Another example: C = 23,, =010111

In general, e nurriper or aaaiuorns equadais orie minus the
number of 1’s in the constant, C.

» Using carry-save adders (for all but one of these) helps
reduce the delay and cost, but the number of adders is still
the number of 1’s in C minus 1.

* |s there a way to further reduce the number of adders (and
thus the cost and delay)?

Spring 2005 EECS150 - Lec23-alc4 Page 14

Multiplication using Subtraction

Subtraction is the same cost and delay as addition.
Consider C*X where C is the constant value 15,, = 01111.
— C*Xrequires 3 adders (probably 2 CSA and 1 CPA).
We can “recode” 15
from 01111 = (23 +22+ 21+ 20)
to 10001 = (24 - 20)
where 1 means negative weight.
Therefore, 15*X can be implemented with only

one subtractor. X
<<3
IV W
Spring 2005 EECS150 - Lec23-alc4 Page 15

Canonic Signed Digit Representation

CSD represents numbers using 1, 1, & 0 with the least
possible number of non-zero digits.

— Strings of 2 or more non-zero digits are replaced.

— Leads to a unique representation.

To form CSD representation might take 2 passes:

— First pass: replace all occurrences of 2 or more 1’s:
01..10 by 10..10
— Second pass: same as a above, plus replace 0110 by 0010

Examples:

011101
100701

29 0010111 = 23 0110110 = 54
32-4+1 0011007 1071070

0101001 =32-8- 1 1001010=64-8-2
Can we further simplify the multiplier circuits?

Spring 2005 EECS150 - Lec23-alc4 Page 16

“Constant Coefficient Multiplication” (KCM)

Binary multiplier: Y = 231*X = (27 + 26 + 25 + 22 + 21420)*X
X

<<7 <<6

CSD helps, but the multipliers are limited to shifts followed by adds.
— CSD multiplier: Y =231*X = (28 - 25 + 23 - 20)*X
X

@—*@—* v

How about shift/add/shift/add .
— KCM multiplier: Y =231*X = 7*33*X)*(25 + 20)*X

'LA'L

No simple algorithm exists to determine the optimal KCM representation.
Most use exhaustive search method.
Spring 2005 EECS150 - Lec23-alc4 Page 17

