
1

Spring 2005 EECS150 - Lec23-alc4 Page 1

EECS150 - Digital Design
Lecture 23 - Arithmetic and Logic Circuits

Part 4

April 19, 2005
John Wawrzynek

Spring 2005 EECS150 - Lec23-alc4 Page 2

Outline
• Shifters / Rotators

– Fixed shift amount
– Variable shift amount

• Multiplication Revisited
– Fixed multiplication value (multiplication by a constant)
– Variable multiplication value (done last week)

2

Spring 2005 EECS150 - Lec23-alc4 Page 3

Fixed Shifters / Rotators
• “fixed” shifters “hardwire”

the shift amount into the
circuit.

• Ex: X >> 2
– (right shift X by 2 places)

• Fixed shift/rotator is
nothing but wires!

So what?

Logical
Shift

Rotate

Arithmetic
Shift

Spring 2005 EECS150 - Lec23-alc4 Page 4

Variable Shifters / Rotators
• Example: X >> S, where S is unknown when we design and build the

circuit.
• Uses: shift instruction in processors (ARM includes a shift on every

instruction), floating-point arithmetic, division/multiplication by powers
of 2, etc.

• One way to build this is a simple shift-register:
a) Load word, b) shift enable for S cycles, c) read word.

– Worst case delay O(N) , not good for processor design.
– Can we do it in O(logN) time and fit it in one cycle?

3

Spring 2005 EECS150 - Lec23-alc4 Page 5

Funnel Shifter / Rotator
• Log(N) stages, each shifts (or not) by a power of 2 places, S=[s2;s1;s0]:

Shift by N/2

Shift by 2

Shift by 1

Spring 2005 EECS150 - Lec23-alc4 Page 6

“Improved” Shifter / Rotator
• How about this approach? Could it lead to even less delay?

• What is the delay of these big muxes?
• How about a transistor-level optimization.

4

Spring 2005 EECS150 - Lec23-alc4 Page 7

Barrel Shifter
• Cost/delay?

– (don’t forget the
decoder)

Spring 2005 EECS150 - Lec23-alc4 Page 8

Connection Matrix

• Generally useful structure:
– N2 control points.
– What other interesting

functions can it do?

5

Spring 2005 EECS150 - Lec23-alc4 Page 9

Cross-bar Switch
• Nlog(N) control

signals.
• Supports all

interesting
permutations

– All one-to-one and
one-to-many
connections.

• Commonly used in
communication
hardware (switches,
routers).

Spring 2005 EECS150 - Lec23-alc4 Page 10

Multiplication Revisited
a3 a2 a1 a0 Multiplicand
b3 b2 b1 b0 Multiplier

X a3b0 a2b0 a1b0 a0b0

 a3b1 a2b1 a1b1 a0b1 Partial

 a3b2 a2b2 a1b2 a0b2 products
a3b3 a2b3 a1b3 a0b3

. . . a1b0+a0b1 a0b0 Product

6

Spring 2005 EECS150 - Lec23-alc4 Page 11

Multiplication Revisited
• Our discussion so far has assumed both the multiplicand

(A) and the multiplier (B) can vary at runtime.
• What if one of the two is a constant?

Y = C * X
• “Constant Coefficient” multiplication comes up often in

signal processing and other hardware. Ex:
yi = αyi-1+ xi

where α is an application dependent constant that is
hard-wired into the circuit.

• How do we build and array style (combinational) multiplier
that takes advantage of the constancy of one of the
operands?

xi yi

Spring 2005 EECS150 - Lec23-alc4 Page 12

Multiplication by a Constant
• If the constant C in C*X is a power of 2, then the multiplication is

simply a shift of X.
• Ex: 4*X

• What about division?

• What about multiplication by non- powers of 2?

7

Spring 2005 EECS150 - Lec23-alc4 Page 13

Multiplication by a Constant
• In general, a combination of fixed shifts and addition:

– Ex: 6*X = 0110 * X = (22 + 21)*X

– Details:

Spring 2005 EECS150 - Lec23-alc4 Page 14

Multiplication by a Constant
• Another example: C = 2310 = 010111

• In general, the number of additions equals one minus the
number of 1’s in the constant, C.

• Using carry-save adders (for all but one of these) helps
reduce the delay and cost, but the number of adders is still
the number of 1’s in C minus 1.

• Is there a way to further reduce the number of adders (and
thus the cost and delay)?

8

Spring 2005 EECS150 - Lec23-alc4 Page 15

Multiplication using Subtraction
• Subtraction is the same cost and delay as addition.
• Consider C*X where C is the constant value 1510 = 01111.

– C*X requires 3 adders (probably 2 CSA and 1 CPA).

• We can “recode” 15
from 01111 = (23 + 22 + 21 + 20)
to 10001 = (24 - 20)

where 1 means negative weight.
• Therefore, 15*X can be implemented with only

one subtractor.

Spring 2005 EECS150 - Lec23-alc4 Page 16

Canonic Signed Digit Representation
• CSD represents numbers using 1, 1, & 0 with the least

possible number of non-zero digits.
– Strings of 2 or more non-zero digits are replaced.
– Leads to a unique representation.

• To form CSD representation might take 2 passes:
– First pass: replace all occurrences of 2 or more 1’s:

01..10 by 10..10
– Second pass: same as a above, plus replace 0110 by 0010

• Examples:

• Can we further simplify the multiplier circuits?

0010111 = 23
0011001
0101001 = 32 - 8 - 1

011101 = 29
100101 = 32 - 4 + 1

0110110 = 54
1011010
1001010 = 64 - 8 - 2

9

Spring 2005 EECS150 - Lec23-alc4 Page 17

“Constant Coefficient Multiplication” (KCM)
Binary multiplier: Y = 231*X = (27 + 26 + 25 + 22 + 21+20)*X

• CSD helps, but the multipliers are limited to shifts followed by adds.
– CSD multiplier: Y = 231*X = (28 - 25 + 23 - 20)*X

• How about shift/add/shift/add …?
– KCM multiplier: Y = 231*X = 7*33*X = (23 - 20)*(25 + 20)*X

• No simple algorithm exists to determine the optimal KCM representation.
• Most use exhaustive search method.

